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PREFACE
In the following pages the attempt is made to give a

presentation of the subject of hydraulics without the use

of higher mathematics. The degree of preparation re-

quired of the reader is merely that now given in high

schools, and includes only arithmetic, algebra, trigo-

nometry, and an elementary course in mechanics. In

particular the author has had in mind the students in the

upper classes of secondary technical schools, and it has

been his aim to present the subject in such a manner that

it may be readily comprehended by them.

It is believed that the essential principles and methods

of hydraulics have been covered, although an expert can

easily criticise the book on the ground that certain topics

have been inadequately treated or omitted altogether.

While it has been harder for the author to decide what

should be omitted than what should be included, it has

been his intention to discuss, as fully as seemed consistent

with the assigned limit of space, those topics which are

of greatest importance in practical engineering work.

MANSFIELD MERRIMAN.

NEW YORK, October, 1912.
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ELEMENTS OF HYDRAULICS

CHAPTER 1

HYDROSTATICS

ARTICLE 1. UNITS OF MEASURE

Hydraulics is that science which treats of water in

motion. Hydrostatics is that part of hydraulics which

treats of the equilibrium and pressure of water for the

case when it is at rest. The unit of linear measure used

injthis book is the foot, while inches must always be re-

duced to feet for use in the hydraulic formulas. The
units of volume are the cubic foot and the gallon, but the

latter must always be reduced to cubic feet for insertion

in the formulas. The gallon used in the United States

contains 231 cubic inches, while in Great Britain the

Imperial gallon is employed which is about 20 percent

larger.

The unit of force is the pound, or the force exerted by

gravity at the surface of the earth on a mass of matter

called the avoirdupois pound. This unit is also used in

measuring weights and pressures of water. The intensity

of pressure is usually measured in pounds per square inch.

The unit of tune to be used in all hydraulic formulas
J.s

the second, although in numerical problems the tune is

often stated in minutes, hours, or days. Velocity is de-

nned as the space passed over by a body in one second

under the condition of uniform motion, so thatjvelocities

are to be always expressed in feet per second, or are to

be reduced to these units if stated in miles per hour or
1 1



HYDROSTATICS CH. 1

otherwise. Acceleration is the velocity gained in one

second, and it is measured in feet per second per second.

The unit of work is the foot-pound; that is, one pound
lifted through a vertical distance of one foot. Energy
is work which can be done; for example, a moving body
has the ability to do a certain amount of work by virtue

of its quantity of matter and its velocity, and this is

called kinetic energy. Again, water at the top of a fall

has the ability to do a certain amount of work by virtue

of its quantity and its height above the foot of the fall,

and this is called potential energy. Potential energy

changes into kinetic energy as the water falls, and kinetic

energy is either changed into heat or may be transformed,

by means of a water motor, into useful work. Power is

work done, or energy capable of being transformed into

work, in a specified time, and the unit for its measure is

the horse-power, which is 550 foot-pounds per second.

Prob. 1 A. When 3200 pounds of water fall every second from

a height of 22 feet, what is the greatest horse-power that can be

developed by the use of the falling stream?

>/ Prob. 1 B. When one cubic foot of water, weighing 62^ pounds,
falls each second from a vertical height of 11 feet, what horse-power
can be developed by a motor which utilizes 80 percent of the energy?

ART. 2. PHYSICAL PROPERTIES OF WATER

At ordinary temperatures pure water is a colorless

liquid which possesses almost perfect fluidity; that is,

its particles have the capacity of moving over each other,

so that the slightest disturbance of equilibrium causes a

flow. It is a consequence of this property that the sur-

face of still water is always level; if several vessels or

tubes be connected, as in Fig. 1, and water be poured
into one of them, it rises in the others until the free

surfaces are in the same level plane.



ART. 2 PHYSICAL PROPERITES OF WATER

The free surface of water is in a different molecular

condition from the other portions, its particles being

drawn together by stronger attractive forces, so as to

form what may be called the "skin of the water," upon

Pig. 1

which bisects may walk or a needle be caused to float.

The skin is not immediately pierced by a sharp point

which moves slowly upward toward it, but a slight eleva-

tion occurs, and this property enables precise determina-

tions of the level of still water to be made by the hook

gage (Art. 53).

At about 32 Fahrenheit a great alteration in the

molecular constitution of water occurs, and ice is formed.

If water be kept hi a perfectly quiet condition, it is found

that its temperature can be reduced to 20 or even to 15'

Fahrenheit, before congelation takes place, but at the

moment when this occurs the temperature rises to 32.

The freezing-point is hence not constant, but the melting-

point of ice is always at the same temperature of 32

Fahrenheit or centigrade. While water freezes at 32

Fahrenheit, yet its maximum density is reached at 39.3

Fahrenheit. At this latter temperature its specific grav-

ity is 1.0 while at 32 it is 0.99987. As the temperature
rises above that of maximum density the specific gravity

of water steadily grows smaller until the boiling-point is

reached at 212 Fahrenheit when it is 0.95865.

Prob. 2. If a cubic foot of pure water weighs 62.424 pounds at

the temperature of maximum density, what is the weight of a cubic

~oot at 32 F.?
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ART. 3. THE WEIGHT OF WATER

The weight of water per unit of volume depends upon
the temperature and upon its degree of purity. The

following approximate values are, however, those gen-

erally employed except when great precision is required :

1 cubic foot of water weighs 62.5 pounds
1 U. S. gallon of water weighs 8.355 pounds

These values will be used in this book, unless otherwise

stated, in the solution of the examples and problems.

The weight per unit of volume of pure distilled water

is the greatest at the temperature of its maximum den-

sity, 39.3 Fahrenheit, and least at the boiling-point.

For ordinary computations the variation in weight due

to temperature is not considered, but in tests of the effi-

ciency of hydraulic motors and of pumps it should be

regarded. The following are the weights of pure dis-

tilled water, in pounds per cubic foot, for a few tempera-
tures in the Fahrenheit scale:

At 32 62.42 At 80 62.22

39.3 62.424 120 61.72

45 62.42 150 61.20

50 62.41 180 60.59

60 62.37 212 59.84

Waters of rivers, springs, and lakes hold in suspension

and solution inorganic matters which cause the weight

per unit of volume to be slightly greater than for pure
water. River waters are usually between 62.3 and 62.6

pounds per cubic foot, depending upon the amount of

impurities and on the temperature, while the water of

some mineral springs has been found to be as high as

62.7. It appears that, in the absence of specific infor-
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mation regarding a particular water, the weight 62.5

pounds per cubic foot is a fair approximate value to use.

It also has the advantage of being a convenient number

in computations, for 62.5 pounds is 1000 ounces, or 100%6
is the equivalent of 62.5.

Brackish and salt waters are always heavier than

fresh water. For the Gulf of Mexico the weight per

cubic foot is about 63.9, for the oceans about 64.1, while

for the Dead Sea there is stated the value 73 pounds per

cubic foot. For Great Salt Lake the weight of water

varies from 69 to 76 pounds per cubic foot. The sewage

of American cities is impure water which weighs from

62.4 to 62.7 pounds per cubic foot, but the sewage of

European cities is somewhat heavier on account of the

ler amount of water that is turned into the sewers.

Prob. 3. How many gallons of water are contained in a pipe

3 inches in diameter and 12 feet long? How many pounds of water

are contained in a pipe 6 inches in diameter and 24 feet long?

ART. 4. ATMOSPHERIC PRESSURE

Torricelli in 1643 discovered that the atmospheric

pressure would cause mercury to rise in a tube from which

the air had been exhausted. This instrument is called

the mercury barometer, and owing to the great density

of mercury the height of the column required to balance

the atmospheric pressure is only about 30 inches. When
water is used in the vacuum tube, the height of the column

is about 34 feet. In both cases the weight of the baro-

metric column is equal to the weight of a column of air of

the same cross-section as that of the tube, both columns

being measured up from the common surface of contact.

The atmosphere exerts its pressure with varying in-

tensity as indicated by the readings of the mercury
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barometer. At and near the sea level the average read-

ing is 30 inches, and as mercury weighs 0.49 pounds per
cubic inch at common temperatures, the average atmos-

pheric pressure is 30X0.49 or 14.7 pounds per square
inch. One atmosphere therefore exerts a pressure of

14.7 pounds per square inch. Then a pressure of two

atmospheres is 29.4 pounds per square inch.

Pascal, in 1646, carried a mercury barometer to the

top of a mountain and found that the height of the mer-

cury column decreased as he ascended. It was thus

definitely proved that the cause of the ascent of the liquid

in the vacuum tube was due to the pressure of the air.

Since mercury is 13.6 times heavier than water, a column

of water should rise to a height of 30X13.6= 408 inches

= 34 feet under the pressure of one atmosphere, and this

was also found to be the case. The following table shows

heights of the mercury and water barometer with the

corresponding pressures in pounds per square inch and

in atmospheres. It also gives approximate elevations

above sea level corresponding to barometer readings, pro-

vided the reading at sea level is 30 inches. In the last

line are approximate boiling-points of water correspond-

ing to the readings of the mercury barometer.

Mercury barometer in inches =
31 30 29 28 27 26 20

Water barometer in feet =
35.1 34.0 32.9 31.7 30.6 29.5 22.7

Pressure in pounds per square inch =
15.2 14.7 14.2 13.7 13.2 12.7 9.8

Pressure in atmospheres =
1.03 1.00 0.97 0.93 0.90 0.86 0.67

Elevations in feet =
-890 +920 +1880 +2870 +3900 +11050

Boiling point of water, Fahrenheit =

213.9 212.2 210.4 208.7 206.9 205.0 192.4



ART. 5 TRANSMISSION OF PRESSURE

/

/

The atmospheric pressure must be taken into account

in many computations on the flow of water in tubes and

pipes. It is this pressure that causes water to flow in

siphons and to rise in tubes from which the air has been

exhausted. By virtue of this pressure the suction pump
is rendered possible, and all forms of injector pumps de-

pend upon it to a certain degree.

Prob. 4 A. A mercury barometer reads 29 inches at the foot of

a hill, and at the same time another barometer reads 28 inches at

the top of the hill. What is the difference in height between the

two stations?

Prob. 4 B. Find, from the above table, the approximate height

above the sea level of a mountain on which water boils at a tem-

perature of 206 F.

ART. 5. TRANSMISSION OF PRESSURE

One of the most remarkable properties of a fluid is its

capacity of transmitting a pressure, applied at one point

of the surface of a closed vessel, unchanged in intensity,

in all directions, so that the effect of the applied pressure

is to cause an equal force per square inch upon all parts

of the enclosing surface. Pascal, in 1646, was the first

to note that great forces

could be produced in this

manner; he saw that the

total pressure increased

proportionally with the area

of the surface. Taking a

closed barrel filled with

water, he inserted a small

vertical tube of considerable
Fig. 2

length tightly into it, and on filling the tube the barrel

burst under the great pressure thus produced on its sides,

although the weight of the water in the tube was quite
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small. The first diagram in Fig. 2 represents Pascal's

barrel, and it is seen that the unit-pressure in the water

at B is due to the head AB and independent of the size of

the tube AC.

Bramah built the first successful hydraulic press in

1796. This machine has two pistons of different sizes,

and a force applied to the small piston is transmitted

through the fluid and produces an equal unit-pressure at

every point on the large piston. The applied force is

here multiplied to any required extent, but the work

performed by the large piston cannot exceed that im-

parted to the fluid by the small one. Let a and A in

Fig. 3 be the areas of the small and large pistons, and

p the pressure in pounds

per square unit applied to

a; then the unit-pressure

in the fluid is p, and the

total pressure on the small

piston is pa, while that on

the large piston is pA.

3
Let the distances through
which the pistons move

during one stroke be d and D. Then the imparted work

is pad, and the performed work, neglecting frictional re-

sistances, is pAD. Consequently ad =AD, and since a

is small as compared with A, the distance D must be

small compared with d. Numerous applications of this

principle are made in hydraulic presses for compressing
materials and forging steel, as also in jacks, accumu-

lators, and hydraulic cranes.

In consequence of its fluidity the pressure existing at

any point in a body of water is exerted in all directions

with equal intensity. When water is confined by a

bounding surface, as in a vessel, its pressure against that
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surface must be normal at every point, for if it were in-

clined, the water would move along the surface. When
water has a free surface, the unit-pressure at any depth

depends only on that depth and not on the shape of the

vessel. Thus in the second diagram of Fig. 2 the unit-

pressure at C produced by the smaller column of water

aC is the same as that caused by the larger column AC,
and the total vertical pressure on the upper side of the

base B is the product of its area into the unit-pressure

caused by the depth AB.

Prob. 5 A. What upward pressure is on the lower side of the

base B in Fig. 2? Explain why this is different from the downward

pressure on the upper side of the base B.

Prob. 5 B. The piston a in Fig. 3 is 2J4 inches hi diameter while

A is 17^2 inches. When a moves 3^j inches, how much does A
move?

ART. 6. HEAD AND PRESSURE

The free surface of water at rest is perpendicular to

the direction of the force of gravity, and for bodies of

water of small extent this surface may be ,regarded as, a

plajig. Any depth below this plane is called a "head,"

apy point is its vertical depth below

the level surface. In Art. 5 it was seen that the unit-

pressure at any depth depends only on the head and not

on the shape of the vessel. Let h be the head and w the

weight of a cubic unit of water; then at the depth h one

horizontal square unit bears a pressure equal to the

weight of a column of water whose height is h, and whose

cross-section is one square unit, or wh. But the pressure

at this point is exerted in all directions with equal in-

tensity. The unit-pressure p at the depth h then is wh,
and the depth, or head, for a unit-pressure p is p/w, or
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When h is expressed in feet and p in pounds per square

foot, these formulas become, using the mean value of w,

p = 62.5 ft

_ft

= 0.016p

Thus pressure and head are mutually convertible, and

in fact one is often used as synonymous with the other,

although really each is proportional to the other. Any
unit-pressure p can be regarded as produced by a head

h, which is frequently called the "pressure-head."

In engineering work p is usually taken in pounds per

square inch, while h is expressed in feet. Thus the pres-

sure in pounds per square foot is 62.5 ft, and the pressure

in pounds per square inch is
XA44 of this, or

p = 0.434 ft ft = 2.30 p (6)

These rules may be stated in words as follows:

1 foot head corresponds to 0.434 pounds per square inch.

1 pound per square inch corresponds to 2.304 feet head.

These values, be it remembered, depend upon the assump-
tion that 62.5 pounds is the weight of a cubic foot of

water, and hence are liable to variations in the third

significant figure (Art. 3).

\t Prob. 6 A. What is the pressure of the water in atmospheres at

the bottom of an ocean 4 miles deep?

Prob. 6 B. How many pounds per square inch correspond to a

head of 230 feet? How many feet head correspond to a pressure
of 100 pounds per square inch?

ART. 7. Loss OF WEIGHT IN WATER

It is a familiar fact that bodies submerged in water

lose part of their weight; a man can carry under water

a large stone which would be difficult to lift in air, and

timber when submerged has a negative weight or tends
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to rise to the surface. The following is the law of loss

which was discovered by Archimedes, about 250 B.C.,

when considering the problem of King Hiero's crown:

The weight of a body submerged in water is less than its

weight in air by the weight of a volume of water which is equal
to the volume of the body.

To demonstrate this, consider that the submerged body
is acted upon by the water pressure hi all directions,

and that the horizontal components of these pressures

must balance. Any vertical elementary prism is sub-

jected to an upward pressure

upon its base which is greater

than the downward pressure

upon its top. Let hi be the

head on the top of the ele-

mentary prism in Fig. 4 and

hz that on its base, and a the Fig. 4

cross-section of the prism;

then the downward pressure is wah\ and the upward
pressure is wahz . The difference of these, wa(hzhi) is

the resultant upward water pressure, and this is equal to

the weight of a column of water whose cross-section is a

and whose height is that of the elementary prism. Ex-

tending this theorem to all the elementary prisms, the

theorem is demonstrated.

It is important to regard this loss of weight in construc-

tions under water. If, for example, a dam of loose stones

allows the water to percolate through it, its weight per
cubic foot is less than its weight hi air, so that it can be

more easily moved by horizontal forces. Since stone

weighs about 150 pounds per cubic foot in air, its weight
.in water is only about 150 62= 88 pounds per cubic foot.

The ratio of the weight of a substance in air to that of
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-j

an equal volume of water is called the specific gravity of

the substance, and for a solid heavier than water this is

easily computed from the law of Archimedes after weigh-

ing a piece of it in air and then in water. Thus, let W
be the weight of a body in air and Wi the weight in water,

then W Wi is the weight of an equal volume of water,

and the specific gravity of the body \sW/(W Wi). An-

other meTho(Tls~to~obtain the weight Wi of a cubic unit

of a substance and divide it by the weight w of a cubic

unit of water.

Prob. 7 A. A piece of lead weighs 6.45 pounds in air and 5.88

pounds in water. Compute the specific gravity of lead.

Prob. 7 B. What is the specific gravity of steel when a cubic

foot of it weighs 490 pounds?

ART. 8. PRESSURE ON SUBMERGED SURFACES

The total normal pressure on any immersed surface

may be found by the following theorem:

The total normal pressure is equal to the product of the

weight of a cubic unit of water, the area of the surface, and

the head on its center of gravity.

To prove this let A be the area of the surface in Fig.

5, and imagine it to be composed of elementary areas,

Fig. 5

Oi, 02, o3 , etc., each of which is so small that the unit-

pressure over it may be taken as uniform; let hi, h%, hs,

etc., be the heads on these elementary areas, and let w
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denote the weight of a cubic unit of water. The unit-

pressures at the depths hi, h%, h3 , etc., are wh\ t whz, wh3 ,

etc. (Art. 6)-, and hence the normal pressures on the ele-

mentary areas, ai, az ,
a3 , etc., are waihi, wa^hi, wajiz, etc.

The total normal pressure P on the entire surface then is

P=

Now let h be the head on the center of gravity of the

surface; then, from the definition of the center of gravity,

aihi+ dzhz+ 03^3+ etc. =Ah

Therefore the normal pressure is

P=wAh (8)

which proves the theorem as stated.

This rule applies to all surfaces, whether plane, curved,

or warped, and however they be situated with reference

to the water surface. Thus the total normal pressure

upon the surface of an immersed cylinder remains the

same whatever be its position, provided the depth of the

center of gravity of that surface be kept constant. It is

best to take h in feet, A in square feet, and w as 62.5

pounds per cubic foot; then P will be in pounds. When
surfaces are given whose centers of gravity are difficult

to determine, they should be divided into simpler sur-

faces, and then the total normal pressure is the sum of

the normal pressures on the separate surfaces.

The normal pressure on the base of a vessel filled with

water is equal to the weight of a cylinder of water whose

base is the base of the vessel, and whose height is the

depth of water. Only in the case of a vertical cylinder

does this become equal to the weight of the water, for

the pressure on the base of a vessel depends upon the

depth of water and not upon the shape of the vessel.
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Also in the case of a dam, the depth of the water and not

the size of the pond, determines the amount of pressure.

The pressure against an immersed plane surface in a

given direction may be found by obtaining the normal

pressure and computing its component in the required

direction.

Prob. 8 A. A board 2 feet wide at the upper end, 4.5 feet wide

at the lower end, and 6 feet long, is immersed vertically in water

with the upper end in the water surface. Compute the normal

pressure on each side of the board.

Prob. 8 B. A circular plate 5 feet in diameter is immersed so that

the head on its center is 18 feet, its plane making an angle of 30

with the vertical. Compute the horizontal and vertical pressures

upon one side of it.

ART. 9. CENTER OF PRESSURE ON RECTANGLES

The center of pressure on a surface immersed in water

is the point of application of the resultant of all the nor-

mal pressures upon it. The simplest case is the following :

When a rectangle is placed with one end in the water sur- I

('

face, the center of pressure is distant from that end two-thirds I

of the length of the rectangle.

This theorem will be proved by the help of Fig. 6.

The rectangle, which in

practice might be a board,
is placed with its breadth

perpendicular to the plane
of the drawing, so that

AB represents its edge. It

is required to find the

center of pressure C. For

Fig. G

hence

any head h the unit-pres-

sure is wh (Art. 8), and

the unit-pressures on one side of AB may be
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graphically represented by arrows which form a triangle.

Now when a force P equal to the total pressure is applied

on the other side of the rectangle to balance these unit-

pressures, it must be placed opposite to the center of

gravity of the triangle. Therefore AC equals two-thirds

of AB, and the rule is proved. The head on C is evi-

dently also two-thirds of the head on B.

Another case is shown in Fig. 7, where the rectangle,

whose length is BiB2) is wholly immersed, the head on B\
A

"Fig. 7 I

J
being hi, and on B2 being h2 . *Let AB=bi, AC=y, and

Now the normal pressure PI on AB\ is ap-

plied at the distance % bi from A, and the normal pressure
P2 on AB2 is applied at the distance % bz from A. The
normal pressure P on BiBz is the difference of PI and P2 ,

or P=P2 PI. Also, by taking moments about A as an

axis, PXy =P2X%b2-PiX%b1

Now, by Art. 7, the normal pressures P2 and PI for a

rectangle one unit in breadth are P2
= J^t^62/i2 and PI=

whence the total normal pressure is P
> bihi). Inserting these in the above equation

and replacing hi and h2 by their values bisin 6 and 62sin 0,

the value of y is
b

3
b

3

Or, if h' is the head on the center of pressure,

h' = f . A r
1
,
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When hz
= hi = h, this formula becomes indeterminate

owing to the common factor h2 hi in both numerator

and denominator. Dividing out this common factor

there is found h' = h.

Prob. 9 A. Find the center of pressure for Fig. 7 when bi =5
and 62

= 16 inches.

Prob. 9 B. A dam is 24 feet high and the water level behind it

is 3 feet below the top. How far above the base is the center of

pressure?

Prob. 9 C. A dam is 31 feet high and water runs over the top
with a depth of 2 feet. How far above the base is the center of

pressure?

ART. 10. PRESSURES ON GATES AND DAMS

In the case of an immersed plane the water presses

equally upon both sides so

that no disturbance of the

equilibrium results from the

pressure. But in case the

water is at different levels

on opposite sides of the sur-

face the opposing pressures

are unequal. For example,
the cross-section of a self-

-^ ^vv,v,v^v^_ acting tide-gate, built to
E^i^ ""'

.

p^.
drain a salt marsh, is shown
in Fig. 8. On the ocean side

there is a head of hi above
the sill, which gives for every linear foot of the gate the
horizontal pressure

Pig. 8

which is applied at the distance ys hi above the sill. On
the other side the head on the sill is k*, which gives the
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horizontal pressure P^Yzivh*: acting in the opposite

direction to that of PI. The resultant horizontal pres-

sure is

and if z is the distance of the point of application of

P above the sill, the equation of moments is

from which z can be computed. For example, if h\ is 7

feet and hz is 4 feet, the resultant pressure on one linear

foot of the gate is found to be 1031 pounds and its point

of application to be 2.82 feet above the sill. The action

of this gate in resisting the water pressure is like that of

a beam under its load, the two points of support being

at the sill and the hinge.

When the water level behind a masonry dam is lower

than its top, as in Fig. 9, the water pressure N on the

A. D

Figs. 9 and 10

back is normal to the plane AB and for computations this

may be resolved into horizontal and vertical components
H and V. Let h be the height of water above the base,

6 the angle which the back makes with the vertical, then

from Art. 8 the values of these pressures, for one linear

unit of the dam, are

and from Art. 9 the point of application of these pres-

sures is at a distance % h above the base. Except in the
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case of hollow dams only the horizontal component H
need usually be considered, since the neglect of V is on

the side of safety.

When the water runs over the top of a dam, as in Fig.

10, let h be the height of the dam and d the depth of water

on its crest. Then

j

and the point of application above the base BD is

h + 3d ! ,

P =
hT2d * *

which always lies between J h and \ h.

Prob. 10 A. Find the greatest pressure on the hinge in Fig. 9

when the height of water is 63^ feet and the length of the gate is

18 feet.

Prob. 10 B. For a dam like Fig. 11 let ft = 64 and d = 10 feet,

while the batter of the back is 4 on 1. Compute values of H, V,

N for one linear foot of the dam.

ART. 11. NUMERICAL COMPUTATIONS

The numerical work of computation should not be

carried to a greater degree of refinement than the data

of the problem warrant. For instance, in questions re-

lating to pressures, the data are uncertain in the third

significant figure, and hence more figures than three in

the final result must be delusive. Thus, let it be required
to compute the number of pounds of water in a box con-

taining 307.37 cubic feet. Taking the mean value 62.5

pounds as the weight of one cubic foot, the multiplica-

tion gives the result 19 210.625 pounds, but evidently
the decimals here have no precision, since the last figure

in 62.5 is not accurate, and is likely to be less than 5, de-

pending upon the impurity of the water and its tern-
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perature. The proper answer to this problem is 19 200

pounds, or perhaps 19 210 pounds, and this is to be re-

garded as a .probable average result.

As this book is mainly intended for the use of students,

a word of advice directed especially to them may not be

inappropriate. It will be necessary for them, in order

to gain a clear understanding of hydraulic science, or of

any other engineering subject, to solve many numerical

problems, and in this a neat and systematic method

should be cultivated. The practice of performing com-

putations on any loose scraps of paper that may happen
to be at hand should be at once discontinued by every
student who has followed it, and he should hereafter

solve his problems in a special book provided for that

purpose, and accompany them by such explanatory re-

marks as may seem necessary hi order to render the solu-

tions clear. Such a note-book, written in ink, and con-

taining the fully worked out solutions of the examples
and problems given in these pages, will prove of great

value to every student who makes it. Before beginning
the solution of a problem a diagram should be drawn

whenever it is possible, for a diagram helps the student

to clearly understand the problem, and a problem thor-

oughly understood is half solved. Before commencing
the numerical work, it is also well to make a mental esti-

mate of the final result.

The following problems will give a review of some of

the principles and facts of this chapter:

Prob. 11 A. What is the weight in pounds of one Imperial gallon
of water?

Prob. 11 B. How many pounds of water can be put into a vessel

which contains 307.36 cubic feet?

V Prob. 11C. When one cubic foot of water falls each second from
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a vertical height of 33 feet, what horse-power can be delivered by
a motor which utilizes 80 percent of the energy?

Prob. 11 D. A diver descends under water to a depth of 102

feet. What is the pressure upon him in atmosphere?

>/ Prob. 11 E. What is weight in pounds of a pint of water? Does

this agree with the old saying "a pint is a pound the world round"?

*/ Prob. ll'F. What is the weight of a cubic foot of a substance

whose specific gravity is 0.73?

Prob. 11 G. A rectangle is immersed in water with one end in

the surface, its size being 2X12 feet, and its inclination to the ver-

tical being 30. Find the horizontal pressure upon it.
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CHAPTER 2

THEORETIC HYDRAULICS

ART. 12. LAWS OF FALLING BODIES

Theoretic Hydraulics treats of the flow of water when
unretarded by opposing fOTTOS nf friction. The motion

of water through orifices and pipes is produced by the

force of gravity. This force is proportional to the ac-

celeration of the velocity of a body falling freely in a

vacuum; that is, to the increase in velocity in one sec-

ond. Acceleration is measured in feet per second per

second, so that its numerical value represents the number
of feet per second which have been gained hi one second.

The letter g is used to denote the acceleration of a falling

body near the surface of the earth. In pure mechanics

g is found in all formulas relating to falling bodies; for

instance, jf a body falls from rest through the height h,

it attains in a VP^.IIH^ fl, velocity equal to V2fflfe. In

hydraulics g is found in all formulas which express the

laws of flow of water under the influence of gravity.

The quantity 32.16 feet per second per second is an

approximate value of g which is used in this book. It is,

however, well known that the force of gravity is not of

constant intensity over the earth's surface, but is greater

at the poles than at the equator, and also greater at the

sea level than on high mountains. For sea level at the

pole g has its greatest value, 32.26 feet per second per

second. For a mountain 10 000 feet high at the equator

g is 32.06 feet per second per second. These extreme

values do not widely differ from the mean value 32.16

feet per second per second.
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When a falling body has the initial velocity u at the

beginning of the time t, its velocity at the end of this time

is V = u+gt and the distance passed over in that time is

Eliminating t from these equations gives

-u2 or h=(V2-u2
)/2g (12)

as the relations between V and h for this case. These

formulas are also true whatever be the direction of the

initial velocity u. When the initial velocity u is zero,

F=V2^ or h=V*/2g

which are the formulas for a body falling from a position

of rest with respect to the earth.

The general case of a body of weight W moving toward

the earth is represented in Fig. 11. When the body is

at A
y

it is at a height hi

i. above a certain horizontal

y
^"-^ B plane and has the velocity

Ok^ Vi, its potential energy being

f
*

l ^^ Whi and its kinetic energy
I_ _ Wvi2

/2g. When it has ar-

Fig n rived at B its height above

the plane is h
2 and its ve-

locity is t>2 ,
its potential energy being Wh2 and its kinetic

energy Wv2
2
/2g. In the first position the sum of its

potential and kinetic energy with respect to the given
horizontal plane is W(hi+v\i

/2g), and in the second posi-

tion the sum of these energies is W(hz+v<?/2g). If no

energy has been lost between the two positions, these

two expressions are equal, and hence

This equation is the simplest form of Bernoulli's the-

orem (Art. 20). It contains two heights and two ve-
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locities, and when three of these quantities are given the

fourth can be found.

Prob. 12 A. What is the velocity of A in Fig. 11, when it

strikes the ground, if direction of vi is vertically upward?

Prob. 12 B. A body enters a room through the ceiling with a

velocity of 17 feet per second, and in a direction making an angle
of 30 with the vertical. If the height of the room is 16 feet, find

the velocity of the body as it strikes the floor, resistances of the

air being neglected.

ART. 13. VELOCITY OF FLOW FROM ORIFICES

When an orifice is opened, either in the base or side of

a vessel containing water, the water flows out with a

velocity which is greater for high heads than for low

heads. The theoretic velocity of flow is given by the

theorem established by Torricelli in 1644:

The theoretic velocity of flow from the orifice is the same
as that acquired by a body after having fallen from rest in a

vacuum through a height equal to the head of water on the

orifice.

One proof of this theorem is by experience. When a

vessel is arranged, as in the first diagram of Fig. 12, so

that a jet of water from

an orifice is directed

vertically upward, it is

known that it never at-

tains to the height of the

level of the water in the

vessel, although under

favorable conditions it
Fig 12

nearly reaches that level.

It may hence be inferred that the jet would actually

rise -to that height were it not for the resistance of the

air and the friction of the edges of the orifice. Now,
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since the velocity required to raise a body vertically

to a certain height is the same as that acquired by it in

falling from rest through that height, the theorem is

established.

For any orifice, therefore, whether its plane is hori-

zontal, vertical, or inclined, provided the head h is so

large that it has practically the same value for all parts

of the orifice, the relation between the velocity V of the

issuing water and the head h is

F=V2^ or h=Vz
/2g (13)

the first of which gives the theoretic velocity of flow due

to a given head, while the second gives the theoretic head

that will produce a given velocity. The term
"
velocity-

head" will generally be used to designate the expression

V2
/2g, this being the height to which the jet would rise

if it were directed vertically upward and there were no

frictional resistances. Using for g the mean value 32.16

feet per second per second, these formulas become

V= 8.020 AT2fe or h= 0.01555^

in which h must be in feet and V in feet per second.

This discussion applies not only to water, but to any

liquid. The direction of the velocity of exit is normal

to the plane of the orifice.

V Prob. 13 A. What velocity directed upward from a horizontal

orifice will cause a jet to rise to the height of 16 feet?

V Prob. 13 B. What is the theoretic velocity of a jet when under

a head of one-tenth of a foot?

ART. 14. FLOW UNDER PRESSURE

When the level of the water in a vessel is subjected to a

pressure p the velocity of flow from the orifice is in-
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creased It is also increased when the orifice is under a

pressure pi which is less than that of the atmosphere.

Let h be the head of actual water on the orifice, h the

head of water which will produce the pressure p ,
and hi

the head which will produce p pi, where p is the

atmospheric pressure. Then the velocity of flow from

the orifice is

V= V 2g(h+h +hl)

Usually p and pi are given in pounds per square inch,

while h and hi are required in feet; then

h = 2.304p hi= 2.304(14.7
-

pi)

As an illustration let the cylindrical tank in Fig. 13 be 2

feet in diameter, and upon the surface of the water let

there be a tightly fitting

piston which with the load

W weighs 3000 pounds.
At the depth 8 feet below

the water level are three

small orifices: one at A,

upon which there is an

exterior head of water of

3 feet; one not shown in

the figure, which dis- Fig. is

charges directly into the

atmosphere; and one at C, where the discharge is into a

vessel in which the air pressure is only 10 pounds per

square inch. It is required to determine the velocity

of efflux from each orifice. The head h corresponding

to the pressure on the upper water surface is

3000

w 3.142 X 62.5
= 15.28 feet

The head hi is 3 feet for the first orifice, o for the second,
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and 2.304 (14.7- 10) = 10.83 feet for the third,

three theoretic velocities of outflow then are:

The

V = 8.02 V8+15.28- 3 = 36. 1 feet per second,

V = 8.02 V8+ 15.28+ =38.7 feet per second,

V = 8.02 V8+15.28+10.83 = 46.8 feet per second.

In the case of discharge from an orifice under water,

as at A in Fig. 13, the value of h hi is the same where-

ever the orifice be placed below the lower level, and

hence the velocity depends only upon the difference of

level of the two water surfaces.

Prob. 14 A. Water under a head of 230 feet flows into a boiler

whose gage reads 45 pounds per square inch. Find the theoretic

velocity of the inflowing water.

Prob. 14 B. What is the theoretic velocity of flow from a small

orifice in a boiler 1 foot below the water level when the steam-gage
reads 60 pounds per square inch? What is the theoretic velocity

when the gage reads 0?

ART. 15. INFLUENCE OF VELOCITY OF APPROACH

Thus far in the determination of the theoretic velocity

from an orifice, the head upon it has been regarded as

constant. But if the cross-section of the vessel is not

large, the head can only be

kept constant by an inflow

of water, and this will modify
the previous formulas. In

this case the water ap-

proaches the orifice with an

initial velocity. Let a be

the area of the orifice and A
the area of the horizontal cross-section of the vessel in Fig.

14. Let V be the velocity of flow through a and v be the

vertical velocity of inflow through A . Let W be the weight

Fig. 14



ART. 15 INFLUENCE OF VELOCITY OF APPROACH 27

of water flowing from the orifice in one second; then an

equal weight must enter at A in one second in order to

maintain a constant head h. The kinetic energy of the

outflowing water is W.V2
/2g, and this is equal, if there

be no loss of energy, to the potential energy W. h of the

inflowing water plus its kinetic energy W .vz/2g, or,

Now since the same quantity of water Q passes through

the two areas in one second, Q =aV = Av, whence v=
V .a/A. Inserting this value of v in the equation of

energy, there is found _
2ghJH

\l-fa(

which is always greater than the v

The influence of the velocity of approach on the ve-

locity of flow at the orifice can now be ascertained by

assigning values to the ratio a/A. Thus,

fora= 1AA V= 1.

fora=
fora=
for a= VioA V= 1.

It is here seen that the common formula (13) is in error

2.1 percent when a = y^A, if the head be maintained

constant by a uniform vertical inflow at the water sur-

face, and 0.5 percent when a = ^oA. Practically, if the

area of the orifice is less than one-tenth of the cross-sec-

tion of the vessel, the error in using the formula V ^2gh
is too small to be noticed, and fortunately most orifices

are smaller in relative size than this.

Prob. 15 A. Show, when a is small compared with unity, that

l/(l+a) = l-a and also that

i . (i 4 *} i- *) i
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Prob. 15 B. Show that a closely approximate expression for the

theoretic velocity V, taking into account velocity of approach, is

-r*-

ART. 16. THE PATH OF A JET

When a jet of water issues from a small orifice in the

vertical side of a vessel or reservoir, its direction at first

is horizontal, but the force of

gravity immediately causes

the jet to move in a curve.

Let x be the abscissa and y
. the ordinate of any point of

the curve, measured from the

orifice as an origin, as seen

in Fig. 15. The effect of the

impulse at the orifice is to

cause the space x to be de-

scribed uniformly in a certain time t, or, if v be the ve-

locity of flow, x= vt. The effect of the force of gravity

is to cause the space y to be described in accordance with

the laws of falling bodies (Art. 12), or y= lAQ$- Elimi-

nating t from these two equations, and replacing v2 by its

theoretic value 2gh, gives

Fig. 15

which is the equation of a parabola whose axis is vertical.

The horizontal range of the jet for any given ordinate y
is found from the equation x*= 4hy. When the height

of the vessel is I, the horizontal range on the plane of the

base hence is x= 2^h(lh). The value of x is when
h= Q and also when h=

l',
it is a maximum when h = %l.

Hence the greatest range is from an orifice at the mid-

height of the vessel.

A more general case is that shown in Fig. 16 when the
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side AD of the vessel is inclined to the vertical at the

angle 0. Here the jet issues normal to AD, rises to a

highest point C, and then

curves downward. If x

and y are horizontal ab-

scissa and vertical ordi-

nate measured from A, it

may be shown that the

equation of the curve is

y = ztan0 z2
sec*0/4/i

** 16 '

which is also the equation of a common parabola.

V Prob. 16 A. For Fig. 15 let A = 6 feet and Z = 18 feet. Compute
the horizontal range of the jet on a horizontal plane one foot above

the base.

M Prob. 165. For Fig. 16 let h =W feet and H =6 feet. Com-
^ pute the velocity with which the jet strikes the horizontal plane

DE.

^ ART. 17. ENERGY OF A JET

Let a jet or stream of water have the velocity v, and

let W be the weight of water per second passing any

given cross-section. The kinetic energy of this moving
wafbr is the same as that stored up by a body of weight
W falling freely under the action of gravity through a

height h and thereby acquiring the velocity v. Thus, if

K represents kinetic energy per second,

Now if a be the area of the cross-section and w the weight
of a cubic unit of water, W is the weight of a prism of

water of length v and cross-section a, or W=wav, whence

K= wav*/2g (17)

and accordingly the energy which a jet can yield in one
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second is directly proportional to its cross-section and to

the cube of its velocity. The term "power" is often

used to express energy per second, and when K is in foot-

pounds per second, the horse-power that a jet can yield is

ascertained by dividing K by 550. Jjence the horse-

powers of iefo of the same cross-section yflrv fla
1ft

ft nll
frfiP

of their velocities. For example, if the velocity of a jet

be doubled, the cross-section remaining the same, the

horse-power is made eight times as great. The term

"energy of a jet" is often used in hydraulics for brevity,

but it always means energy per second of the jet; that

is, the power of the jet.

The expressions just deduced give the maximum work
which can be obtained from the jet in one second, but

this, in practice, can never be fully utilized. It is the

constant aim of inventors so to arrange the conditions

that the work realized may be as near the theoretic energy
as possible. The "efficiency" of an apparatus for utiliz-

ing the power of water is the ratio of the work k actu-

ally utilized to the theoretic energy, or the efficiency e is

e= k/K

The greatest possible value of e is unity, but this can

never be attained, owing to the imperfections of the

apparatus and the frictional resistances. Values greater

than 0.90 have, however, been obtained; that is, 90 per-

cent or more of the theoretic power of the water has been

utilized in some of the best forms of hydraulic motors.

For example, let water issue from a pipe 2 inches in

diameter with a velocity of 40 feet per second. The
cross-section in square feet is 3.142/144, and the kinetic

energy of the jet in foot-pounds per second is

= 0.01555X62.5X0.0218X403 =
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which i/2^6pbrse-powers. If this jet operates a motor

yielding TTT/ horse-powers, the efficiency of the appara-
Itus is 17.7/24.6 = 0.72, or 72 percent of the theoretic

energy is utilized.

Prob. 17 A. When water issues from a pipe with a velocity of

3 feet per second, its kinetic energy is sufficient to generate 1.3

horse-powers. What is the horse-power when the velocity becomes

/6 feet per second?

\i I Prob. 17 B. What horse-power can be furnished by a jet issu-
*

/ ikg^from a nozzle 1^ inches in diameter with a velocity of 80 feet

per second, when the efficiency of the motor is 80 percent?

ART. 18. IMPULSE AND REACTION OF A JET

When a stream or jet is in motion, delivering W pounds
of water per second with the uniform velocity v, that mo-

tion may be regarded as produced by a constant force

F, which has acted upon W for one second and- then

ceased. In this second the velocity of W has increased

from o to v, and the space %v has been described. Con-

sequently the work FX%v has been imparted to the

water by the force F. But the kinetic energy of the

moving water is W . v*/2g, and hence by the law of 'con-

servation of energy FXl/fa^WXiP/Zg, from which the

constant force is

F=W.v/g

This value of F is called the dynamic pressure or the

impulse of the jet. As W is in pounds per second, v in

feet per second, and g in feet per second per second, the

value of F is in pounds.

The reaction of a jet upon a vessel occurs when water

flows from an orifice. This reaction must be equal in

value and opposite in direction to the impulse. In the

direction of the jet the impulse produces motion, in the

opposite direction it produces an equal pressure which
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tends to move the vessel backward. The force of reac-

tion of a jet is hence equal to the impulse but is opposite
in direction. For example (Fig. 17), let a vessel contain-

ing water be suspended at A
so that it can swing freely,

and let an orifice be opened
in its side at B. The head

of water at B causes a pres-

sure which acts toward the

Fig 17
left and causes W pounds of

water to move during every
second with the velocity of v feet per second, and which also

acts toward the right and causes the vessel to swing out

of the vertical; the first of these forces is the impulse,

and the second is the reaction of the jet. If a force R
be applied on the right of a vessel so as to prevent the

swinging, its value is

R=F=W.v/g
and this is the formula for the reaction of the jet.

The impulse or reaction of a jet issuing from an orifice

is double the hydrostatic pressure on the area of the ori-

fice. Let h be the head of water, a the area of the orifice,

and w the weight of a cubic unit of water; then, by Art.

8, the normal pressure when the orifice is closed is wah.

When the orifice is opened, the weight of water issuing

per second is W=wav, and hence the impulse or reaction

of the jet is

R=F= wav . v/g= 2wa . vz/2g= 2wah

which is double the hydrostatic pressure. This theoretic

conclusion has been verified by many experiments.

When a jet impinges normally on a plane, it produces
a dynamic pressure on that plane equal to the impulse
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F, since the force required to stop W pounds of water in

one second is the same as that required to put it in mo-

tion. Again, if a stream moving with the velocity Vi is

retarded so that its velocity becomes vz ,
the impulse in the

first instant is W.Vi/g, and in the second W.v2/g. The
difference of these, or

is a measure of the dynamic pressure which has been

developed. It is by virtue of the pressure due to change
of velocity that turbine wheels and other hydraulic
motors transform the kinetic energy of moving water

into useful work.

Prob. 19-4. If a stream of water issues horizontally from a

vessel with a velocity of 15 feet per second, what reaction does it

exert on the vessel?

Prob. 19 B. If a stream of water 3 inches in diameter issues from

an orifice in a direction inclined downward 26 to the horizon with

a velocity of 15 feet per second, find its horizontal reaction on the

vessel.

y ART. 19. THEORETIC DISCHARGE

The term ''discharge" means the volume of water

flowing in one second from a pipe or orifice, and the letter

Q will designate the theoretic discharge; that is, the dis-

charge as computed without considering the losses due to

fractional resistances. When all the filaments of water

issue from the pipe or orifice with the same velocity, the

quantity of water issuing in one second is equal to the

volume of a prism having a base equal to the cross-sec-

tion of the stream and a length equal to the velocity. If

this area is a and the theoretic velocity is F, then Q=aV
is the theoretic discharge. Taking a in square feet and
F in feet per second, Q is in cubic feet per second.

3
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For a small orifice on which the head h has the same

value for all parts of the opening, the theoretic discharge is

Q =aV = a^l2gh (19)

and in English measures Q = 8.02 a V h. For example, let

a circular orifice 3 inches in diameter be under a head of

10.5 feet, and let it be required to compute Q. Here 3

inches = 0.25 feet, and the area of the circle is found to

be 0.04909 square feet. From Art. 13 the theoretic ve-

locity V= 8.02 X VTO:5 = 25.99 feet per second. Accord-

ingly the theoretic discharge is 0.04909X25.99 = 1.28

cubic feet per second.

The above formula for Q applies strictly only to hori-

zontal orifices upon which the head h is constant, but it

will be seen later that its error for vertical orifices is less

than one-half of one percent when h is greater than double

the depth of the orifice. Horizontal orifices are but little

used, as it is more convenient in practice to arrange an

opening in the side of a vessel than in its base. In ap-

plying the above formula to a vertical orifice, h is the

vertical distance from its center to the free-water surface.

Since the theoretic velocity is always greater than the

actual velocity, the theoretic discharge is a limit which

can never be reached under actual conditions. Theo-

retically the discharge is independent of the shape of the

orifice, so that a square orifice of area a gives the same

theoretic discharge as a circular orifice of area a; it will

be seen in Chap. 3 that this is not quite true for the

actual discharge. It is supposed in the above formula

that the velocity of a jet is the same in all parts of the

cross-section, as this would be the case if h has the same
value throughout the section were it not for the retard-

ing influence of friction. If q is the actual discharge from

any orifice and v the mean velocity in the area a, then
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the equation^;
=
g/ajmay be regarded as a defini-

tiorof the term "mean velocity." The theoretic mean

velocity is ^2gh, but the actual mean velocity is smaller,

as will be seen in Chap. 3.

Prob. 19 A. Compute the mean velocity in a pipe 12 inches in

cUameter when the discharge is 8.5 cubic feet per minute.

Prob. 19 B. Compute the theoretic head required to deliver 300

gallons of water per minute through an orifice 3 inches in diameter.

y ART. 20. STEADY FLOW IN SMOOTH PIPES

When water flows through a pipe of varying cross-

section and all sections are filled with water, the same

quantity of water passes each section in one second.

This is called the case of steady flow. Let q be this

quantity of water and let v\, v2 ,
v3 be the mean velocities

in three sections whose areas are a\, a2 ,
a3 . Then

This is called the condition for steady flow, and it shows

that the velocities at different sections vary inversely as

the areas of those sections. If v is the velocity at the

end of the pipe where the area is a, then also q= av.

When the discharge q and the areas of the sections have

been measured, the mean velocities may be computed.

When a pipe is filled with water at rest, the pressure

at any point depends only upon the head of water above

that point. But when the water is in motion, it is a fact

of observation that the pressure becomes less than that

due to the head. The unit-pressure in any case may be

measured by the height of a column of water. Thus if

the water is at rest in the case shown in Fig. 18, and

small tubes are inserted at the sections at ai and dz, the

water will rise in each tube to the same level as that of
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the water surface in the reservoir, and the pressures in the

sections will be those due to the hydrostatic heads HI
and Hz. But if the valve at the right be opened, the

water levels in the

small tubes will sink

and the mean pressures

in the two sections will

be those due to the

pressure-heads hi and hz .

Fig. 18

Let W be the weight
of water flowing in

each second through
each section of the pipe, and let vi and vz be the mean

velocity in the section a\ and 0%. When this water was

at rest, the potential energy of pressure in the section

ai was WHi'f
when it is in motion, the energy in the

section is the pressure energy Whi plus the kinetic

energy W.Vi2
/2g. If no losses of energy due to friction

or impact have occurred, the energy in the Jwo cases must

be equal. The same reasoning applies to the section a2 ,

and hence

77- and (20)

These equations exhibit the law of steady flow first de-

duced by Daniel Bernouilli in 1738, and hence often called

Bernoulli's theorem; it may be stated in words as follows:

At any section of a tube or pipe, under steady flow without

friction, the pressure-head plus the velocity-head is equal to

the hydrostatic head that obtains when there is no flow.

The pressure-head at any section hence decreases when
the velocity of the water increases. To illustrate, let the

depths of the centers of cti and a2 be 6 and 8 feet below
the water level, and let their areas be 1.2 and 2.4 square
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feet. Let the discharge of the pipe be 14.4 cubic feet

per second. Then from (20) the mean velocity in ai is

#1=14.4/1.2 = 12 feet per second, which corresponds to

a velocity head of 0.01555#2= 2.24 feet, and consequently
from the pressure-head in i is 6.0 2.24 = 3.76 feet.

For the section a
2 the velocity is 6 feet per second and the

velocity head is 0.56 feet, so that the pressure-head there

is 8.0 -0.56 = 7.44 feet.

tA negative pressure may occur when the velocity-

head becomes greater than the hydrostatic head, for (20)

shows that hi is negative when Vi
2
/2g exceeds HI. A case

of this kind is given^n Fig.

19, where .the sectidr at A
is so small that the velocity

is greater than that due to

the head Hi, so that if a.tube

be inserted at A, no water

runs out; but if the tube
p.g 19

be carried downward into a

vessel of water, there will be lifted a column CD whose

height is that of the negative pressure-head hi. For

example, let the cross-section of A be 0.4 square feet,

and its head HI be 4.1 feet, while 8 cubic feet per second

are discharged from the orifice below. Then the velocity

at A is 20 feet per second, and the corresponding velocity-

head is 6.22 feet. The pressure head at A then is, from

the above theorem (20)

fci
= 4.1-6.22= -2.12 feet

and accordingly there exists at A an inward pressure

Pi= 2.12X0.434= 0.92 pounds per square inch

This negative pressure will sustain a column of water

CD whose height is 2.12 feet. When the small vessel is
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placed so that its water level is less than 2.12 feet below

A, water will be constantly drawn from the smaller to

the larger vessel.

The siphon is a tube or pipe which rises higher than

the water level in a vessel and discharges water at a lower

level; Fig. 20 shows such a pipe. The velocity v in the

pipe is uniform, being the

same as that at the outlet

end. For the highest

point of the pipe, at a

height H above the water

Fig. 20 level, the theoretic" pres-

sure-head is hi = H
vz/2g which is always negative. Hence air tends to

enter the upper part of the pipe under this negative

pressure-head. For a point of the pipe, at a distance HI
below the water level, the theoretic pressure-head is

hi= Hi vz/2g which may be either positive or negative.

Frictional resistances modify these algebraic expressions,

as seen in Art. 38.

Prob. 20 A. Compute the velocity-head of a jet 0.1 feet in di-

ameter which discharges 2.5 cubic feet per minute.

Prob. 20 B. Compute the theoretic discharge from a vertical

rectangular orifice 0.5 feet wide and 0.25 feet high, when the head

on the top of the orifice is 0.375 feet.

Prob. 20 C. How many pounds of water flow in each second

from a nozzle, 1 inch in diameter, when the velocity of the issuing

water is 18 feet per second?

Prob. 20 D. Compute the theoretic discharge from an orifice one

inch in diameter under a head of 18 inches.

Prob. 20 E. The hydrostatic pressure in a pipe is 80 pounds per

square inch. What velocity must the water have to reduce this to

50 pounds per square inch?
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CHAPTER 3 ;( }fo

FLOW FROM ORIFICES AND TUBES

ART. 21. THE STANDARD ORIFICE

Orifices for the measurement of water are usually

placed in the vertical side of a vessel or reservoir, but may

also be placed in the base. In the former case it is

understood 4hat the upper edge of the opening is com-

pletely covered with water; and generally the head of

water on an orifice is at least three or four times its ver-

tical height. The term "standard orifice" is here used

to signify that the opening is so arranged that the water

in flowing from it touches only a line, as would be the

case in a plate of no thickness. In precise experiments

the orifice may be in a metallic plate whose thickness is

really small, as at A in Fig.

21, but more commonly it

is' cut in a board or plank,

care being taken that the

inner edge is a definite corner.

It is usual to bevel the outer

edges of the orifice, as at C,

so that the escaping jet may

by no possibility touch the

edges except at the inner

corner. This arrangement may be regarded as a stand-

ard apparatus for the measurement of water; for, as

will be seen later, the discharge is modified when the

inner corner is rounded, and different degrees of round-

ing give different discharges.

The contraction of the jet which is always observed
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when water issues from a standard orifice, as described

above, is a most interesting and important phenomenon.
The appearance of such a jet under steady flow, issuing

from a circular orifice, is that of a clear crystal bar whose

beauty claims the admiration of every observer. The
contraction of the jet is greatest at a distance from the

plane of the orifice of about one-half its diameter. Be-

yond this section the jet enlarges in size if it is directed

upward, but decreases in size if it is directed downward
or horizontally.

The contraction of the jet is also observed in the case

of rectangular and triangular orifices, its cross-section

being similar to that of

the orifice until the place

of greatest contraction is

passed. Fig. 22 shows in

A/~\
<^? ^^ ^e ^P row cross~secti ns

\-/ IJ ||
of a jet from a square ori-

fice, in the middle row

those from a triangular

Q f~\ (^ ~5 one, and in the third row

Fi 22
those from an elliptical

orifice. The left - hand

diagram in each case is the cross-section of the jet near

the place of greatest contraction, while the following ones

are cross-sections at greater distances from the orifice,

and the jets are supposed to be moving horizontally or

nearly so.

Owing to this contraction, the discharge from a stand-

ard orifice is always less than the theoretic discharge,

which, from Arts. 13 and 19, is expressed by Q = a^2gh
where a is the area of the orifice and h the head above

its center. It is customary, then, to multiply the theo-

retic discharge by a number c, called the coefficient of
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discharge. Then the quantity of water flowing per sec-

ond from the orifice, is cQ, or

is the formula for the actual discharge from an orifice.

A mean value of the coefficient c is 0.61, that is the actual

{discharge is 61 percent of the theoretic, f|igfh*ufm

* Prob. 21 A. Compute the actual discharge from an orifice one

inch in diameter under a head of 1.5 feet.

r*^ Prob. 21 B. The discharge from a certain orifice under a head of 1

I 3.5 feet is 1.357 cubic feet per second. What is the discharge 1

(when the head is 7.0 feet? ^
ART. 22. COEFFICIENT OF CONTRACTION

The coefficient of contraction is the number by which

the area of the orifice is to be multiplied in order to give

the area of the section of the jet at the place of its greatest

contraction. Thus, if c' be the coefficient of contraction,

a the area of the orifice, and a' the area of the contracted

section of the jet, then

a' = c'a (22)

The coefficient of contraction for a standard orifice is

evidently always less than unity.

The only direct method of finding the value of c' is to

measure by calipers the dimensions of the least cross-

section of the jet. The size of the orifice can usually be

determined with precision, as also the diameter of a cir-

cular jet. Let d and d! be the diameters of the areas a

and a1

;
then

Therefore the coefficient of contraction is the square of

the ratio of the diameter of the jet to that of the orifice.

The first measurements were made in 1685 by Newton,
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who found the ratio of d' to d to be 21/25, which gives

for c the value 0.71. Other experimenters have found

values ranging from 0.57 to 0.66, but the best work in-

dicates a range from 0.60 to 0.63.

The following mean value will be used in this book

for orifices, and it should be kept in mind by the student :

Coefficient of contraction c' = 0.62

or, in other words, the minimum cross-section of the jet

is 62 percent of that of the orifice. This value, however,

undoubtedly varies for different forms of orifices and for

the same orifice under different heads, but little is known

regarding the extent of these variations or the laws that

govern them. Probably c' is slightly smaller for circles

than for squares, and smaller for squares than for rec-

tangles, particularly if the height of the rectangle is long

compared with its width. Probably also c' is larger for

low heads than for high heads.

Prob. 22 A. The diameter of a circular orifice is 1.995 inches.

Three measurements of the diameter of the contracted section of

the jet gave 1.55, 1.56, and 1.59 inches. Find the mean coefficient

of contraction.

J Prob. 22 B. A circular orifice is 3 inches in diameter. What is

the diameter of the jet at the contracted section?

ART. 23. COEFFICIENT OF VELOCITY

The coefficient of velocity is the number by which the

theoretic velocity of flow from the orifice is to be multi-

plied in order to give the actual velocity at the least

cross-section of the jet. Thus, if Ci be the coefficient of

velocity, V the theoretic velocity due to the head on the

center of the orifice, and v the actual velocity at the

contracted section, then

v = clV = cl ^2gh (23)
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The coefficient of velocity must be less than unity, since

the force of gravity cannot generate a greater velocity

than that due to the head.

The velocity of flow at the contracted section of the

jet cannot be directly measured. To obtain the value

of the coefficient of velocity, indirect observations have

been taken on the path of the jet. Referring to Art. 16,

it will be seen that when a jet flows from an orifice in

the vertical side of a vessel, it takes a path whose equa-
tion is y = gx

2
/2v

2
,
in which x and y are the coordinates

of any point of the path measured from vertical and hori-

zontal axes, and v is the velocity at the origin. Now
placing for v its value c

t ^2gh, and solving for ci, gives

Therefore Ci becomes known by the measurement of the

head h and the coordinates x and y. In making this

experiment it would be well to have a ring, a little larger

than the jet, supported by a stiff frame which can be

moved until the jet passes through the ring. The flow

of water can then be stopped, and the coordinates of the

center of the ring determined. By placing the ring at

different points of the path different sets of coordinates

can be obtained. The value of x should be measured

from the contracted section rather than from the ori-

fice, since v is the velocity at the former point.

By this method various values of Ci ranging from 0.97

to 0.99 have been found. As a mean value for standard

orifices the following may be kept in the memory:

Coefficient of velocity c\= 0.98

or, the actual valocity of flow at the contracted section

is 98 percent of the theoretic velocity. The value of Ci

is greater for high than for low heads.
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Prob. 23. A jet issuing from the vertical side of a vessel has a

range of 12.5 feet on a horizontal plane 2.82 feet below the orifice.

The head being 14.38 feet, compute the coefficient of velocity.

ART. 24. COEFFICIENT OF DISCHARGE

The coefficient of discharge is the number by which

the theoretic discharge is to be multiplied in order to

obtain the actual discharge. Thus, if c is the coefficient

of discharge, Q the theoretical and q the actual discharge

per second, then

q= cQ (24)

Here also the coefficient c is a number less than unity.

The coefficient of discharge can be accurately found by
allowing the flow from an orifice to fall into a vessel of

constant cross-section and measuring the heights of water

by the hook gage (Art. 53). Thus q is known, and Q
having been computed, then

C= q/Q

For example, a circular orifice of 0.1 foot diameter was

kept under a constant head of 4.677 feet; during 5 min-

utes and 32% seconds the jet flowed into a measuring
vessel which was found to contain 27.28 cubic feet. Here

the actual discharge was

9
= 27.28/332.2 = 0.08212 cubic feet per second

The theoretic discharge then is

Q = 7rX0.052 X8.02V4.677 = 0.1361 cubic feet per second

Then the coefficient of discharge is found to. be

c= 0.08212/0.1361 = 0.604

In this manner thousands of experiments have been made

upon different forms of orifices under different heads, for
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accurate knowledge regarding this coefficient is of great

importance in practical hydraulic work.

In general c is greater for low heads than for high

heads, greater for rectangles than for squares, and greater

for squares than for circles. Its values range from 0.59

to 0.63 or higher, and as a mean to be kept in mind,

Coefficient of discharge c= 0.61 |\

or, the actual discharge from a standard orifice is, on the

average, about 61 percent of the theoretic discharge.

The coefficient c may be expressed in terms of the co-

efficients c' and d. Let a and a' be the areas of the ori-

fice and the cross-section of the contracted jet, and Q
and q the theoretic and actual discharge per second.

Then, since a'/a= c',

_ q _ l _
(/ .-. . L Cj

Q

and therefore the coefficient of discharge is the product
of the coefficients of contraction and velocity.

These three coefficients are of much importance, not

only for orifices but for tubes and weirs, although the

numerical values may be different from those above

stated. The coefficient of discharge is of greater value

than the coefficients of contraction and velocity, since

it is the quantity generally used in making measurements

of water.

Prob. 24 A. What is the discharge in gallons per minute from

a circular orifice one inch in diameter under a head of one foot, the

coefficient of discharge being 0.609?

Prob. 24 B. The diameter of a contracted circular jet was found

to be 0.79 inches, the diameter of the orifice being 1 inch. Under
a head of 16 feet the actual discharge per minute was found to be

6.42 cubic feet. Find the coefficient of velocity.
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ART. 25. CIRCULAR VERTICAL ORIFICES

Let a circular orifice of diameter d and area a be in the

side of a vessel and let h be the head of water on its center.

Then, from Art. 13, the theoretic mean velocity is ^2gh,
and from Art. 19 the theoretic discharge is

This formula, however, is not strictly exact, because the

velocity in the lower part of the orifice is greater than

that at the top, owing to the greater head. By the

methods of higher mathematics the following more exact

formula is derived

Q = [1
- 0.007812 (d/h)

2
]^ird

2
^2gh

which should be used when h is less than 2d. For h = d

the quantity in the parenthesis is 0.992 and for h = 2d

it is 0.998. Hence the error in using the first formula is

less than three-tenths of one percent when the head on

the center of the orifice is greater than twice its diameter.

For most cases, then, the actual discharge from a cir-

cular vertical orifice of area a may be computed from

q

in which c is the coefficient of discharge. When h is

smaller than two or three times the diameter of the ori-

fice, and when precision is required, then

? = c[l-0.007812(d//i)
2
]8.02 a^h

Here h is the head in feet, and a is the area of the circular

orifice in square feet; then q will be in cubic feet per
second.

The following values of c for standard circular orifices
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are taken from a more extended table in Merriman's

Treatise on Hydraulics (New York, 1912) :

Head in feet,' A = 0.6 0.8 1.0 2.0 6.0 20.0

Ford = 0.02 feet, c =0.655 0.648 0.644 0.632 0.618 0.601

Ford = 0.04 feet, c = .630 .626 .623 .614 .607 .599

Ford =0.07 feet, c= .618 .615 .612 .607 .602 .597

Ford = 0.1 feet, c= .613 .610 .608 .604 .600 .596

Ford =0.2 feet, c= .601 .601 .600 .599 .598 .596

Ford = 0.6 feet, c= .593 .594 .595 .597 .597 .596

Ford = 1.0 foot c= .590 .591 .593 .595 .596 .594

As an example of the computation of discharge, let it

be required to find q for a standard orifice 2 inches hi

diameter under a head of 4 feet. Here 2 inches =0.167

feet, so that c lies between the third and fourth lines

from the foot of the table and also between the fourth

and fifth columns. Interpolating first between the col-

umns c lies between 0.602 and 0.5985; then interpolating

between these two values it is found that the value of c

required is 0.600. Then a = 0.02 181 square feet and the

formula gives q = 0.210 cubic feet per second, a value

j

which is uncertain in the third decimal place, since the

I values of c have probably a like uncertainty.

ft Prob. 25 A. Find from the table the coefficient of discharge from

/a standard circular orifice under a head of 1.75 feet.

f
Prob. 25 B. Compute the coefficient of discharge for a case

where 1.61 cubic feet of water flowed in 10 seconds from an orifice

2 inches in diameter under a head of 2.35 feet.

ART. 26. RECTANGULAR VERTICAL ORIFICES

When the size of an orifice hi the side of a vessel is

small compared with the head, the theoretic velocity of

the outflowing water may be taken as ^2gh, where h is

the head on the center of the orifice. For a rectangular
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orifice under this condition the theoretic discharge is

where b is the Width and d the depth of the orifice. When

_ _ b is equal to d, the rectangle

becomes a square.

For a more exact formula,

let hi be the head on the

upper edge of the orifice, hz

that on the lower edge (Fig.

23). By the methods of

higher mathematics it may be then found that

which is the theoretic discharge through the rectangle.

Placing in this h<L
= h-\-%d and h\ = h %il and develop-

ing by the binomial formula, it becomes

(<*/*) (d/hr- .

and this shows that the discharge computed by using the

first formula is always too great. For h= d, the quan-

tity in the parenthesis is 0.989, and for h = 2d, it is

0.997. Accordingly, the error of the approximate
formula is only three-tenths of one percent when the

head on the center of the rectangle is twice the depth
of the orifice.

For most cases, then, the actual discharge from a

square vertical orifice may be approximately found from

where d is the side of the square and c is the coefficient

of discharge. When h is smaller than two or three times
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the side of the orifice, and when precision is required, then

In both cases the linear quantities are to be taken in

feet, and then q will be in cubic feet per second.

Values of c for square vertical orifices as determined

by numerous experiments are given hi the following table :

Head in feet, A = 0.6 0.8 1.0 2.0 6.0 20.0

Ford = 0.02 feet, c= 0.660 0.652 0.648 0.637 0.623 0.606

Ford = 0.04 feet, c= .636 .631 .628 .619 .612 .604

Ford =0.07 feet, c= .623 .620 .618 .612 .607 .602

Ford = 0.1 feet, c= .617 .615 .613 .608 .605 .602

Ford = 0.2 feet, c= .605 .605 .605 .605 .604 .602

Ford = 0.6 feet, c= .598 .600 .601 .604 .603 .601

Ford = 1.0 foot, c= .596 .597 .599 .602 .602 .600

Comparing this table with that hi the last article it is

seen that c for a square is always slightly larger than

that for a circle having a diameter equal to the side of a

square.

For a rectangle having its lowest side horizontal, the

coefficient for approximate work may be taken the same

as for a square orifice with side equal to the depth of the

rectangular one; then the discharge is found by the above

formulas for Q, these being multiplied by the proper
coefficient c. The discharge thus computed is slightly

too small.

Velocity of approach must be taken into account in

/computing the discharge in cases where great precision
'

is required. See Art. 15.

/ Prob. 26 A. Compute the discharge for a standard orifice 2

mches square under a head of 4 feet.

I Prob. 26 B. Compute the approximate discharge for a rectangu-
4
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D F C
Fig. 24

lar orifice 12 inches wide and 4 inches deep when the head on the

top of the orifice is 32 inches.

ART. 27. SPECIAL ORIFICES

A submerged orifice is one which discharges under

water under a head h as shown in Fig. 24. The theoretic

discharge is the same for the

same head hi whatever be

the depth of the orifice below

the lower water level. The
theoretic velocity in all parts

of the orifice is the same,
as may be proved from Fig.

24, where the triangles ACD
and BCE represent the distribution of pressure on AC
and BC when the orifice is closed (Art. 8). Making
CF equal to CE and drawing BF, the unit-pressure on

BC is seen to have the constant value DF. Now when the

orifice is opened, the velocity at any point depends on

the unit-pressure there acting, and accordingly the the-

oretic velocity is uniform over the section. The coefficient

of discharge c, when the inner edge is arranged like a

standard orifice, ranges from 0.60 to 0.62. Submerged
orifices are used for canal-locks, tide-gates, filter-beds,

for the discharge of waste water through dams, and for

the admission of water from

a canal to a power-plant.

The inner edges of such ori-

fices are usually rounded, and

the coefficient of discharge

may then be higher than 0.9.

Fig. 25

When a vertical orifice has

its lower edge at the bottom of the reservoir, as shown
at A in Fig. 25, the particles of water flowing through
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its lower portion move in lines nearly perpendicular to

the plane of the orifice, or the contraction of the jet

does not form on the lower side. This is called a case

of suppressed or incomplete contraction. The same thing

occurs, but in a lesser degree, when the lower edge of

the orifice is near the bottom, as shown at B. In like

manner, when an orifice is placed so that one of its ver-

tical edges is at or near a side of the reservoir, as at C,

the contraction of the jet is suppressed upon one side, and

when it is placed at the lower corner of the reservoir sup-

pression occurs both upon one side and the lower part

of the jet. Experiments show that for square orifices

with contraction suppressed on one side the coefficient

of discharge is increased about 3.5 percent, and with

contraction suppressed on two sides about 7.5 percent.

For a rectangular orifice with the contraction suppressed
on the bottom edge the percentages are larger, being
about 6 or 7 percent when the length of the rectangle

is four times its height.

When the inner edge of the orifice is rounded, as shown
in Fig. 26, the contraction of the jet is modified, and the

discharge is increased. With

a slight degree of rounding,

as at A, a partial contraction

occurs; but with a more com-

plete rounding, as at C, the

particles of water issue per-

pendicular to the plane of

the orifice and there is no

contraction of the jet. For

a standard orifice with sharp
inner edges (Art. 22) the mean value of c' is 0.62, but for

an orifice with rounded edges c' may have any value be-

tween 0.62 and 1.0, depending upon the degree of round-

Fig. 26
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ing. A rounded interior edge in an orifice is therefore

always a source of error when the object of the orifice is

the measurement of the discharge.

Prob. 27 A. When an orifice with rounded edges has a coefficient

of velocity of 0.88 and a coefficient of discharge of 0.75, find the

coefficient of contraction of the jet.

4 Prob. 27 B. Compute the probable discharge from a vertical

orifice one foot square when the head on its upper edge is 4 feet,

the contraction being suppressed on the lower edge. Compute the

discharge for the same data when contraction is suppressed on all

sides.

ART. 28. THE STANDARD SHORT TUBE
4,

The standard short tube is a cylinder whose length is

about three times its diameter through which water flows

from a vessel. The inner edge of the tube has a sharp
definite corner like that of the standard orifice. When

a tube is about one or

two diameters in length the

stream passes through with-

out touching the tube and

the discharge is the same

as that from the standard

orifice. When it is length-

ened sufficiently the stream

fills the tube as in Fig. 27

and the discharge is much in-

creased. By observations on

glass tubes it is seen that

the stream usually contracts

at first and then expands. This contraction may be

apparently destroyed by agitating the water and the

entire tube is then filled, yet if a hole is bored in the

tube near the inner end, water does not flow out but

air enters, showing that a negative pressure exists there.

Fig. 27
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Experiments show that the discharge of the standard

short tube is usually from 30 to 36 percent greater than

that of the standard orifice. Referring to the outer end

of the tube where the section is completely filled, the

mean coefficients are

Coefficient of contraction =1.00

Coefficient of velocity = 0.82

Coefficient of discharge = 0.82

The cause of the increased discharge of the tube over the

orifice is a partial vacuum, which causes a portion of the

atmospheric head of 34 feet to be added to the head h,

so that the flow at the contracted section occurs as if

under the head h-\-hi (Fig. 27). The occurrence of this

partial vacuum is attributed to the friction of the water

on the air. When the flow begins, the stream is sur-

rounded by air of the normal atmospheric pressure which

is imprisoned as the stream fills the tube. The friction

of the moving water carries some of this air out with it,

thus rarefying the remaining air. This rarefaction, or

negative pressure, is followed by an increased velocity of

flow, and the process continues until the air around the

contracted section is so rarefied that no more is removed,
and the flow then remains permanent. The partial vacu-

um causes neither a gain nor loss of head, for although
it increases the velocity-head at the contracted section,

this must be later decreased hi order to overcome the

atmospheric pressure at the outer end of the tube. The

experiments of Buff have proved that in an almost com-

plete vacuum the discharge of the tube is but little greater

than that of the orifice.

It will be shown that the negative pressure-head hi is

about %h, as was first discovered experimentally by
Venturi. The coefficient of contraction for the con-
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traded section being 0.62 (Art. 22) and that at the outer

end of the tube being 0.82, the velocity in the contracted

section is

82

and hence the velocity-head in that section is

v2/2g=1.75h

Accordingly from the theorem that pressure-head plus

velocity-head equals total head (Art. 20) the pressure-

head in the contracted section is hl.75h= 0.75 which

is the value of hi in Fig. 27. This conclusion does not

hold for very high heads, since in no event can atmos-

pheric pressure raise a column of water higher than

about 34 feet (Art. 4).

Prob. 28 A. Show that the mean velocity-head of a stream from

a standard orifice is 96 percent of the head.

Prob. 28 B. Show that the mean velocity-head of a stream from

a standard short tube is 67 percent of the head.

ART. 29. VARIOUS FORMS OF TUBES

Conical converging tubes are used when it is desired

to obtain a high efficiency in the energy of the stream of

water. At A, Fig. 28,

is shown a simple con-

verging tube, consist-

ing of a frustrum of

A :~^(B a cone, and at B is a

2g
similar frustrum pro-

vided with a cylin-

drical tip. The proportions of these converging tubes,

or mouthpieces, vary somewhat in practice, but the

cylindrical tip, when employed, is of a length equal to
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about 2J^ times its inner diameter, while the conical part

is eight or ten times the length of that diameter. The
stream from a conical converging tube like A suffers a

contraction at some distance beyond the end. The co-

efficient of discharge is higher than that of the stand-

ard tube, being generally between 0.85 and 0.95.

Inward projecting tubes, as a rule, give a less discharge

than those whose ends are flush with the side of the

Fig. 29

reservoir, due to the greater convergence of the lines of

direction of the filaments of water. At A and B, Fig.-

29, are shown inward projecting tubes so short that the

water merely touches their inner edges, and hence they

may more properly be called orifices. Experiment shows

that the case at A, where the sides of the tube are normal

to the side of the reservoir,

gives the minimum co-

efficient of discharge c=

0.5, while for B the value

lies between 0.5 and that

for the standard orifice at

C. The inward project-

ing cylindrical tube at D
has been found to give a

discharge of about 72 per-

cent of the theoretic dis-

charge, while the standard

tube gives 82 percent.

In Fig. 30 is shown a diverging conical tube, BC, and

two compound tubes. The compound tube ABC consists
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of two cones, the converging one AB being much shorter

than the diverging one BCj so that the shape roughly

approximates to the form of the contracted jet which

issues from an orifice in a thin plate. In the tube AE
the curved converging part AB closely imitates the con-

tracted jet, and BB is a short cylinder in which all the

filaments of the stream are supposed to move in lines

parallel to the axis of the tube, the remaining part being

a frustrum of a cone. The converging part of a com-

pound tube is often called a mouthpiece and the diverg-

ing part an adjutage. Experiments were made by J. B.

Francis on a tube BE of 4.1 feet long, the diameters

at B and E being 0.102 and 0.321 feet, showed the

coefficient of discharge for the section B to be 2.43 and

that for the section E to be 0.24, the head being 1.36

feet. Here the velocity-head for the section B was 5.9/i

so that a negative pressure-head of 4.9/i existed there.

The explanation of this is similar to that given for the

standard short tube in Art. 28.

Prob. 29 A. Find the coefficient of discharge for a tube whose

diameter is one inch when the flow under a head of 9 feet is 22.1

cubic feet in 3 minutes and 30 seconds.

Prob. 29 B. When the coefficient of discharge of a tube is 0.98

and the coefficient of velocity of the jet is 0.995, compute the co-

efficient of contraction of the jet.

ART. 30. LOSSES OF HEAD

A jet of water flowing from an orifice with the velocity

v has the velocity-head vz/2g which is always less than

the pressure-head h. The difference of these is the head

lost in friction and impact, or

which applies not only to an orifice but to any tube or
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pipe. For the orifice or tube v= c\^2gh where c\ is the

coefficient of velocity and hence

h'=(l-dz
)h

which gives the lost head in terms of the total head, or

2g

which gives the lost head in terms of the velocity-head of

the jet.

In hydraulics the terms "energy" and "head" are

often used as synonymous, although really energy is pro-

portional to head. Thus the pressure-head that causes

the flow is h and the velocity-head of the issuing jet is

v*/2g, and these are proportional to the theoretic and

effective energies. For the standard orifice the mean
value of ci is 0.98, and hence a mean value of c\ is 0.96.

The actual energy of a jet from such an orifice is hence

about 96 percent of the theoretic energy, and the loss of

energy or head is about 4 percent. This loss is due to

the frictional resistance of the edges of the orifice, where-

by the energy of pressure or velocity is changed into heat.

For the standard short tube the mean value of c\ is

0.82 and hence a mean value of Ci
2

is 0.67. The actual

energy of a jet from such a tube is hence about 0.67 per-

cent of the theoretic energy, and the loss of energy or

head is about 33 percent. This loss is due both to fric-

tion and to the impact of the expanding stream.

The above discussion shows that if jets are directed

vertically upward from a standard orifice and tube, as

in Fig. 31, the jet from the former rises to the height

0.96/1, while that from the latter rises to the height 0.67/1,

where h is the head measured downward from the sur-

face of water hi the reservoir to the point of exit from the
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o 96 n

orifice. Hence, if the issuing streams are of the same

diameter, the power derivable from the former is much

greater than from the

latter.

Energy within a pipe

or tube filled with mov-

ing water usually exists

in two forms, in po-

tential energy of pres-

sure and in kinetic

energy of motion, the

former corresponding

to pressure-head and
Fig<31 the latter to velocity-

head. Thus for the case of gradual contraction shown

in Fig. 32, let two small vertical tubes, called piezometers,

be inserted; the water rises in these to the heights hi

and hz, which are the pressure-heads at the two sections.

The mean velocities at these sections being Vi and v2 the

velocity-heads are Vi
2
/2g and v<?l2g. The weight of

water flowing per second being W, the total energy in the

first section is W(hi+vi2
/2g) and that in the second

section is W (h2+v2
2
/2g).

The difference of these is

the energy Wh' which is

lost in friction and im-

pact in passing from the

first to the second section.

Hence

fc'-fc-M-jg
-
f-

which shows that for a

horizontal tube or pipe the lost head h f between two

sections is equal to the difference of the pressure-heads

Fig. 32
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plus the difference of the velocity-heads. When the two

sections are of the same size the velocities v\ and Vz are

equal, since the same quantity of water passes each sec-

tion in one second, and then h' = hi /?2 or the lost head

is equal to the difference of the pressure-heads.

For the case of gradual expansion of section shown in Fig.

33 the same reasoning ap-

plies and the same formula

results. Here, however, hi

is smaller than A2 ,
so that

the difference hi h2 is nega-

tive, its numerical value be-

ing less than the difference

between the velocity-heads.

The above formula applies

to all cases of loss of head

between two sections of a

horizontal tube or pipe.

Fig. 33

is inclined see Art. 37.

For the case when the pipe

. 30 A. For an inward projecting tube (D in Fig. 31) the

coefficient of discharge is 0.72. Show that the lost head is 0.52 h.

j/Prob.
30 B. In Fig. 32 let the areas of the two sections be 1.0

and 0.5 square feet, hi = 3.250 feet, h2
= 3.947 feet, and vi=3.5 feet

per second. Compute the lost head h'.

ART. 31. SUDDEN CHANGES IN SECTION

When there is a sudden enlargement of section in a

tube or pipe, as in Fig. 34, energy is lost in impact. In

the section AB the pressure-head is hi and the velocity-

head is Vi
2
/2g, while in the section CD the pressure-head

has the larger value h% and the velocity-head has the

smaller value v2
2
/2g. Formula (30) of the last arti-

cle correctly gives the lost head h' for this case, but
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when hi and hz are unknown it is convenient to express

it in terms of vi and vz alone. The investigation given

on page 180 of Treatise on Hydraulics (Ninth edition,

1912) shows that

_

is the loss of head due to sudden expansion of section, or

rather due to the sudden diminution of velocity which

occurs in passing from the

smaller to the larger section.

Sudden enlargement of

section should always be

avoided in tubes and pipes

owing to the loss of head that

it causes, which may often

be very great. For example,
let there be no pressure-head
in the section

m

a\ and let v\

be due to a head h so that

Vi= ^2gh', let the area a2 be four times that of a\ so that

v2 is one-fourth of v\. The loss of head due to sudden ex-

pansion then is

Fig. 34

so that more than one-half of the energy of the water

in ai is lost in impact, having been changed into heat.

In the section a2 the effective head is 7
/iQh, of which i/ic>h

is velocity-head and %oh is pressure-head.

When a sudden contraction of section in the direction

of the flow occurs, as in Fig. 35, the water suffers a con-

traction similar to that in the standard orifice, and hence

in its expansion to fill the second section a loss of head

results. Let Vi be the velocity in the larger section and
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v that in the smaller, while v' is the velocity in the con-

tracted section of the flowing stream; and let a\, a and
a' be the corresponding areas of the cross-sections. From
the above formula the loss of head due to the expansion
of section from a' to a is

(V-vY (a ^'f* (\ rf*
2g ~\a'

l
) 2g-(c'~

l
) 2g

in which c
f
is the coefficient of contraction of the stream

or the ratio of a' to a (Art. 24). The value of c
r

depends

upon the ratio between the

areas a and ai. When a is

small compared with a\, the

value of c' may be taken at

0.62 as for orifices (Art. 22).

When a is equal to a\, there

is no contraction or expan-
sion of the stream and c'

is unity. Let d and d\ be

the diameters corresponding
to the areas a and a\, and let

r be the ratio of d to di. Then experiments seem to indi-

cate that c' is given by

c' = 0.582 + 9

Fig. 35

From this approximate values of c' can be computed,

for r= 0.0 0.4 0.6 0.7 0.8 0.9 0.95 1.0

c' = 0.62 0.64 0.67 0.69 0.72 0.79 0.86 1.00

Prob. 31 A. In a horizontal tube like Fig. 36 the diameters are

6 inches and 12 inches and the discharge is 1.57 cubic feet per sec-

ond. Compute the loss of head due to the sudden enlargement.

Prob. 31 B. Compute the loss of head when a pipe which dis-

charges 1.57 cubic feet per second suddenly diminishes in section

from 12 to 6 inches diameter.
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ART. 32. NOZZLES AND JETS

For fire service two forms of nozzles are in use. The
smooth nozzle is essentially a conical tube like A in Fig.

28, the larger end being attached to a hose, but it is often

provided with a cylindrical tip and sometimes the larger

end is curved, as shown in Fig. 36. The ring nozzle is a

Fig. 36 Fig. 37

similar tube, but its end is contracted so that the water

issues through an orifice smaller than the end of the

tube (Fig. 37). The experiments of Freeman show that

the mean coefficient of discharge is about 0.97 for the

smooth nozzle and about 0.74 for the ring nozzle. The
smooth nozzle is used much more than the ring nozzle.

Let p be the pressure in pounds per square 'nch as

found by a gage placed at the nozzle entrance, D the

diameter in inches of the tip of the nozzle, d the diameter

in inches of the pipe or hose at the nozzle entrance, and
c the coefficient of discharge, then

q = 29.83 D2J

gives the discharge in gallons per minute. For example,
let D= 1 inch d= 2.5 inches c= 0.972 for a smooth noz-

zle, p=lOO pounds per square inch; then the formula

gives g
= 290 gallons per minute.

For smooth nozzles the value of the coefficient of ve-

locity Ci is the same as that of the coefficient of discharge

c, since the jet issues without contraction. The experi-

ments of Freeman furnish the following mean values of



ART. 32 NOZZLES AND JETS 63
-

the coefficient of discharge for smooth cone nozzles of

different diameters under pressure-heads ranging from

45 to 180 feet

Diameter in inches = % % 1 1^ 1 1A 1%
Coefficient c =0.983 0.982 0.972 0.976 0.971 0.959

These values were determined by measuring the pres-

sure p and the discharge q, from which c can be com-

puted by the above formula. For example, a nozzle hav-

ing a diameter of 1.001 inches at the end and 2.50 inches

at the base discharged 208.5 gallons per minute under a

pressure of 50 pounds per square inch at the entrance.

Here &= 1.001, d=2.5, p= 50, and g
= 208.5, and in-

serting these in the formula and solving for c, there is

found c= 0.985.

In ring nozzles the ring which contracts the entrance is

usually only VIQ or Vs inch in width. The effect of this

is to diminish the discharge, but the stream is sometimes

thrown to a slightly greater height. On the whole, ring

nozzles seem to have no advantage over smooth ones

for fire purposes.

With pressures of 50 and 100 pounds per square inch

at the entrance to smooth nozzles of one inch diameter,

vertical jets rise to heights of about 101 and 152 feet in

still air, but the limits of heights as good effective fire

streams are about 73 and 96 feet respectively. The
maximum horizontal distances to which the extreme drops
from the jets can be thrown are about 160 and 230 feet,

but the practical horizontal distances for effective fire

streams are only about one-half these figures.

The ball nozzle, often used for sprinkling, has a cup
at the end of the nozzle and within the cup a ball, so

that the jet issuing from the tip of the nozzle is deflected

sidewise in all directions. This apparatus exhibits a
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striking illustration of the principle of negative pressure,

for the ball is not driven away from the tip, but is held

close to it by the atmospheric pressure, the negative

pressure-head being caused by the high velocity of the

sheet of water around the ball. The cup is usually so

arranged that the ball cannot be driven out of it, for this

might occur under the first impact of the jet, but when
the flow has become steady, there is no tendency of this

kind, and the ball is seen slowly revolving upon the

cushion of water without touching any part of the cup.

Prob. 32 A. When the coefficient of contraction of a jet is 1.00

and the coefficient of velocity of the nozzle is 0.97, what is the co-

efficient of discharge of the nozzle?

Prob. 32 B. Under a head of 6 feet the discharge from an orifice

is 3.74 gallons per second. What head is necessary in order that

the discharge may be one cubic foot per second?

Prob. 32 C. Compute the probable discharge through a vertical

circular orifice of % inches diameter under a head of 1.75 feet.

Prob. 32 D. An orifice one inch square in a gate like that of

Fig. 8 is 3 feet below the higher water level and 2 feet below the

lower water level. Compute the discharge in cubic feet per minute.
w

Prob. 32 E. When the coefficient of velocity is 0.98, compute
the velocity from a nozzle of 1 inch diameter when attached to a

hose of lYz inches diameter, the pressure at the entrance, as meas-

ured by a gage, being 43.4 pounds per square inch.
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CHAPTER 4

FLOW THROUGH PIPES

ART. 33. FUNDAMENTAL IDEAS

Pipes made of clay were used in very early times for

conveying water. The Romans used lead pipes for con-

veying water from their aqueducts to small reservoirs

and from the latter to their houses. Frontinus gives a

list of twenty-five standard sizes of pipes, varying in

diameter from 0.9 to 9 inches, which were made by curv-

ing a sheet of lead about ten feet long and soldering the

longitudinal joint. In modern times lead pipes have

also been used for house service, but these are now largely

superseded by either iron pipes or iron pipes lined with

lead or tin. For the mains of city water supplies cast-

iron pipes are most common, and since 1890 steel-riveted

pipes have come into use for large sizes. Lap-welded

wrought-iron or steel pipes are used in some cases where

the pressure is very high, and large wooden stave pipes

are in use in the western part of the United States. A
very large pipe which brings water to a city is sometimes

called an aqueduct, but the word is more properly applied

to a brick or concrete conduit which is laid on a tolerably

uniform grade and does not run full. For pipes, on the

other hand, the section is fully filled and the water is

often under pressure from high heads.

The phenomena of flow through a pipe are apparently

simple. The water from the reservoir, as it enters the

pipe, meets with more or less resistance, depending upon
the manner of connecting, as in tubes (Art. 29). Re-

sistances of friction and cohesion must then be overcome
5
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along the interior surface, so that the discharge at the

end is much smaller than in the tube. When the flow

becomes steady, the pipe is entirely filled throughout its

length; and hence the mean velocity at any section is

the same as that at the end when the size is uniform.

This velocity is found

to decrease as the length

of the pipe increases,

other things being

equal, and becomes

Figt 38 very small for great

lengths, which shows

that nearly all the head has been lost in overcoming
the resistances. The length of the pipe is measured

along its axis, following all the curves, if there be any.

The velocity considered is the mean velocity, which is

equal to the discharge divided by the area of the cross-sec-

tion of the pipe.

The head which causes the flow is the difference in

level from the surface of the water in the reservoir to

the center of the end, when the discharge occurs freely

into the air as in Fig. 38. If h be this head, and W the

weight of water discharged

per second, the theoretic

potential energy per sec-

ond is Wh] and if v be the

actual mean velocity of

discharge, the kinetic

energy of the discharge is

W. vz/2g. The difference between these is the energy
which has been transformed into heat in overcoming
the resistances. Thus the total head is h, the velocity-

head of the outflowing stream is v*/2g, and the lost head

is hv2
/2g. If the lower end of the pipe is submerged, as

Fig. 39
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in Fig. 39, the head h is the difference in elevation be-

tween the two water levels.

The total loss of head in a straight pipe of uniform size

consists of two parts. First, there is a loss of head h'

due to entrance, which is the same as in a short cylin-

drical tube, and secondly there is a loss of head h" due to

the frictional resistance of the interior surface. The loss

of head at entrance is always less than the velocity-head

and in this chapter it will be expressed by the formula

From Art. 30 it is seen that the value of m is (1/Ci)
2 1

where Ci is the coefficient of velocity. Hence for a pipe

projecting into the reservoir (D in Fig. 29) m is 0.93, for

a pipe with end flush with inner side of the reservoir m
is 0.49, and for a perfect mouthpiece with rounded

edges m is 0. When the condition of the end is not

specified the value used for m in the following pages
will be 0.5.

The loss of head in friction is very large for long pipes

while the loss of head at entrance is very small. For

example it is proved by actual gagings that a clean cast-

iron pipe 10000 feet long and 1 foot in diameter dis-

charges about 4J4 cubic feet per second under a head of

100 feet. The mean velocity then is, if q be the discharge
and a the area of the cross-section,

q 4.25
V =

a Q 7854
= 5 '41 feet per secon(*

and the probable loss of head at entrance hence is

h'= 0.5X0.01555X5.412 = 0.23 feet,

or only one-fourth of one percent of the total head. In

this case the effective velocity-head of the issuing stream
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is only 0.45 feet, which shows that the total loss of head

is 99.55 feet, of which 99.32 feet are loss in friction.

Prob. 33 A. Under a head of 20 feet a pipe 1 inch in diameter

and 100 feet long discharges 15 gallons per minute. Compute the

loss of head at entrance.

Prob. 33 B. Consult Herschel's Water Supply of the City of

Rome (Boston, 1899) and find several facts regarding the old aque-
ducts and pipes.

ART. 34. Loss OF HEAD IN FRICTION

The loss of head due to the resisting friction of the in-

terior surface of a pipe is usually large, and in long pipes

it becomes very great, so that the discharge is only a

small percentage of that due to the head. Many obser-

vations have been made upon pipes of different sizes and

lengths under different velocities of flow, and the discus-

sion of these has enabled the approximate laws to be de-

duced which govern the loss of head in friction. These

laws are:

1. The loss of head in friction is directly proportional to the

length of the pipe.

2. It is inversely proportional to the diameter of the pipe.

3. It increases nearly as the square of the velocity.

4. It is independent of the pressure of the water.

5. It increases with the roughness of the interior surface.

These five laws may be expressed by the formula

in which I is the length of the pipe, d its diameter, / is an

abstract number which depends upon the degree of rough-
ness of the surface, and v2/2g is the velocity-head due to

the mean velocity.

The quantity / may be called the friction factor, and

its value ranges from 0.05 to 0.01 for new clean iron
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pipes. A mean value, often used in rough computations, is

Friction factor /= 0.02

The following table enables closer values of / to be se-

lected for new clean cast-iron pipes when the diameter

of the pipe and the mean velocity are known:

Vel. in feet per sec. = 1 2 3 4 6 10 15

0.05 feet, /=0.047 0.041 0.037 0.034 0.031 0.029 0.028

0.1 feet, /= .038 .032 .030 .028 .026 .024 .023

0.25 feet, /= .032 .028 .026 .02^ .024 .022 .021

0.5 feet, /= .028 .026 .025 .023 .022 .020 .019

0.75 feet, /= .026 .025 .024 .022 .021 .019 .018

1 foot, /= .025 .024 .023 .022 .020 .018 .017

2 feet, /= .021 .020 .019 .017 .016 .014 .013

3 feet, /= .019 .018 .016 .015 .014 .013 .012

To determine, therefore, the probable loss of head in

friction, the velocity v must be known, and / is taken

from the above table for the given diameter of pipes. The
formula (34) then gives the probable loss of head in fric-

tion. For example, let Z=10000 feet, d=l foot, z;
= 5.41

feet per second. Then from the table the friction factor

/is 0.021, and

h" = 0.021 X ~ X 0.455 = 95.5 feet

which is to be regarded as an approximate value, liable

to an uncertainty of 5 percent.

Old pipes have interior surfaces much rougher than

new ones, especially when tubercules are formed. The
effect of these if often to render the friction factor / two
or three times as large as the values given above.

\l
Prob. 34 A. Compute the loss of head in friction fojr a new

cast-iron pipe 600 feet long and 3 inches in diameter, when its

discharge is 2.5 cubic feet per minute.
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ART. 35. VELOCITY AND DISCHARGE

The mean velocity in a straight pipe of uniform sec-

tion can now be deduced. Let h be the total head and

v the mean velocity in the pipe. The head h is equal to

the head h' lost in entrance plus the head h" lost in fric-

tion plus the velocity-head v2/2g, or h = h'-\-h"+v2
/2g.

Inserting for h' its mean value from Art. 33 and for h"

the value given in Art. 34, and solving for v there is found

2gh

,5+/(Z/d)

which is a formula for the mean velocity. This formula

applies only under such conditions that the entire pipe

is filled with water; it cannot be used for a short vertical

pipe discharging from a tank.

In this formula the friction factor / is a function of v

to be taken from the table in Art. 34, and hence v cannot

be directly computed, but must be obtained by successive

approximations. For example, let it be required to com-

pute the velocity of discharge from a pipe 1000 feet long

and 6 inches in diameter under a head of 9 feet. Here

Z=1000 feet d = 0.5 feet, J/d= 2000, h = 9 feet, and taking

for / the rough mean value 0.02, the formula gives

The approximate velocity is hence 3.7 feet per second,

and entering the table with this, the value of / is found

to be 0.023. Then the formula gives

v = J * x dZ - 1D x tf = 3.5 feet per second

Again, entering the table with v 3.5 and d=0.5, there

is found /= 0.024, and repeating the computation there
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is found # = 3.4 feet per second. The conclusion there-

fore is that the velocity is about 3.4 feet per second if

the pipe be new and clean.

The discharge per second from a pipe of given diame-

ter is found by multiplying the velocity of discharge by
the area of the cross-section of the pipe, or

in which v is to be found by the method described

above.

For example, to find the discharge in gallons per min-

ute from a clean pipe 3 inches in diameter and 1500 feet

long under a head of 64 feet. Here d = 0.25, /= 1500, and

h= 64 feet. Then for /=0.02 the velocity is found to be

5.82 feet per second; then from the last article/= 0.024

and the velocity becomes 5.30 feet per second. The dis-

charge then is 5= 0.7854 X 0.252X 5.30 = 0.260 cubic

feet per second.

I/ Prob. 35 A. Compute the velocity in a new pipe 3 inches in

diameter and 400 feet long under a head of 16 feet.

& Prob. 35 B. Compute the discharge in cubic feet per second

from a new pipe 0.25 feet in diameter and 400 feet k g under a head

of 16 feet.

ART. 36. LONG PIPES

A pipe is said to be long when f(l/d) in the above

formula for v is so large that the dropping of the number
1.5 in the denominator produces an error of less than one

percent. This occurs, for the mean value of 0.02 for /,

when l/d is greater than about 4000. For this case the

formulas for velocity and discharge are
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which, for the English system of measures, become

From these expressions for q the general and special for-

mulas for computing the diameter of the pipe for a given

discharge, length, and head are found to be

.

n 2

g h \ h J

In using these equations the friction factor / is taken

from the table in Art. 34 for new clean pipes, and for old

pipes from the best data obtainable (see Treatise on

Hydraulics, Ninth Edition, Art. 106). In determining
the proper size for a pipe which is to carry water liable

to cause corrosion or tuberculation it is well to take / as

about double of the values given in Art. 34.

For example, let it be required to determine the diame-

ter of a new cast-iron pipe which is to deliver 500 gallons

per second, its length being 4500 feet and the head 24

feet. Here the discharge is

5= 500/7.481 = 66.84 cubic feet per second.

The approximate value of d then is

'0.02x4500x66.84V*
-2j- -J

=3.35 feet.d= 0.479
('

From this the mean velocity of flow is

66.84
V=

0.7854X3.35
2=7 -6 feet per SeC nd

>

and from the table in Art. 37 the value of / for this diame-

ter and velocity is found to be 0.013. Then the second

computation gives d= 3.08 feet. The required diameter

is therefore 3.1 feet, or about 37 inches; but as the
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regular market sizes of pipes furnish only 36 inches and

40 inches, one of these must be used, and it will be on the

side of safety to select the larger.

If it is thought likely that this pipe may become so foul

as to make/ as high as 2X0.013, then the computation

gives d=3.54 feet or about 42 inches. It is thus seen

that the determination of the proper diameter for a new

pipe involves elements which require the exercise of

judgment trained by experience.

For circular orifices and for short tubes of equal length

under the same head, the discharge varies as the square

of the diameter. For pipes of equal length under a given
head the discharges vary more rapidly owing to the in-

fluence of friction, since the above formula shows that if

/ be constant, q varies as d%. The relative discharging

capacities of pipes hence vary approximately as the 2^
powers of their diameters. Thus, if two pipes of diame-

ters di and d% have same length and head, and if q\ and qz

be their discharges, then

di%dw& or q2=

For example, if there be two pipes of 6 and 12 niches

diameter, dz/di equals 2 and hence q z
=

5.7qi, or the sec-

ond pipe discharges nearly six times as much as the first.

In a similar manner it can be shown that 32 pipes of 6

inches diameter have the same discharging capacity as 1

pipe 24 inches in diameter.

Prob. 36 A. Compute the discharge through a new pipe 9000

feet long and 36 inches diameter under a head of 48 feet.

Prob. 36 B. Compute the diameter required to deliver 15 000

cubic feet per hour through a new pipe 26 500 feet long under a

head of 324.7 feet. If this quantity is carried in two pipes of equal

diameter, what should be their size?
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ART. 37. PIEZOMETERS

A piezometer is a vertical tube inserted into a water

pipe. When the pipe is filled and there is no flow the water

in the piezometer tube stands at the same level as that

in the reservoir. When the flow occurs the water in the

piezometer tube falls, and its height above the axis of the

pipe shows the pressure-head which there exists.

Fig. 40 shows an inclined pipe, the two section areas

ai and az being unequal, so that the velocities therein are

Fig. 40

Vi and t>2, while the pressure-heads at these sections are

hi and hz. Let MN be any horizontal plane lower than

the lowest section, as for instance the sea level, and let

e\ and ez be the elevations of ai and 02 above it. With

respect to this plane the weight W at a\ has the potential

energy Wei, the pressure-energy Whi, and the kinetic

energy W.Vi2
/2g, or the total energy is

Similarly with respect to this plane the energy of W in 02 is

If no losses of energy occur between the two sections,
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these expressions are equal, and hence

which is the general theorem of Bernouilli, namely:

In any pipe, under steady flow without impact or friction, the

gravity-head plus the pressure-head plus the velocity-head is a

constant quantity for every section.

Now let H\ and Hz be the heights of the water levels in

the piezometer tubes above the datum plane; then
= Hi and 62+^2 = #2, and accordingly

or, the piezometer elevation for ai plus the velocity-head

is equal to the sum of the corresponding quantities for

any other section.

The above theorem belongs to theoretical hydraulics,

in which frictional resistances are not considered. Under

actual conditions there is always a loss of energy or head,

so that when water flows from ai to 02, the first member
of the above equation is larger than the second. Let Wh f

be the loss in energy, then this is equal to the difference

of the energies in ai and 0% with respect to the datum

plane, or, 2 2
T/ rr TT i_

V
l V2

h =ff1-ft+--_
that is, the lost head is equal to the difference in level

of the water surfaces in the piezometer tubes plus the dif-

ferences of the velocity-heads.

The most common case is when the pipe is of uniform

size throughout, or QI = a2 ,
then v\ and t;2 are equal because

the flow is steady. The head lost in friction between any
two sections is then simply,
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so that it is only necessary to ascertain the difference

of elevation of the water in the piezometers by running a

line of levels in order to determine the head lost in fric-

tion in the pipe between them.

Prob. 37 A. The water level in the piezometer at ai is 67.329

feet above a certain bench mark and that in the piezometer at a2

63.791 feet above the same bench mark. The pipe being of uni-

form size, what is the loss of head in friction between the two

sections?

Prob. 37 B. What is the loss of head for the above data when
the section ai is 12 inches in diameter and that at a2 is 9 inches in

diameter, the discharge being 2.7 cubic feet per second?

ART. 38. THE HYDRAULIC GRADIENT

The hydraulic gradient is a line which connects the

water levels in piezometers placed at intervals along the

pipe; or rather, it is the line to which the water levels

would rise if pie-

zometer tubes were

inserted. In Fig. 41

the line EC is the

hydraulic gradient,

and it is now to be

shown that for a

pipe of uniform size

this is approximately a straight line. For a pipe dis-

charging freely into the air this line joins the outlet end

with a point B near the top of the reservoir. For a pipe

with submerged discharge, as in Fig. 41, it joins the

lower water level with the point B.

Let DI be any point on the pipe distant li from the

reservoir, measured along the pipe line. The piezometer
there placed rises to Ci, which is a point in the hydraulic

gradient. The equation of this line with reference to

Fig. 41
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the origin A is given by

77

in which H\ is the ordinate Aid, and l\ is the abscissa

AAi, provided that the length of the pipe is sensibly

equivalent to its horizontal projection. In this equation

the first term of the second member is constant for a given

velocity, and is represented in the figure by AB or AiBi;
the second term varies with li, and is represented by Bid.
The gradient is therefore a straight line.

When there are easy horizontal curves in a pipe line,

the above conclusions are unaffected, except that the

gradient BC is always vertically above the pipe, and there-

fore can be called straight only by courtesy, although as

before the ordinate Bid is proportional to l\. When
there are sharp curves, the inclination of the hydraulic

gradient becomes greater and it is depressed at each

curve by an amount equal to the loss of head which there

occurs. When an obstruction occurs in a pipe, or a valve

is partially closed, there is a sudden depression of the

gradient at the obstruction or at the valve.

If a pipe is so laid that a portion of it rises above the

hydraulic gradient

as at DI in Fig. 42,

an entire change of

condition generally

results. If the pipe

is closed at C, all the

piezometers stand in
Fig 42

the line AA, at the

same level as the surface of the reservoir. When the valve

at C is opened, the flow at first occurs under normal con-

ditions, h being the head and BC the hydraulic gradient.
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The pressure-head at DI is then negative, as in a siphon

(Art. 20), and is represented by DiCi. As a consequence
air tends to enter the pipe, and when it does so, owing to

defective joints, the continuity of the flow is broken, and

then the pipe from DI to C is only partly filled with water.

The hydraulic gradient is then shifted to BDi, the dis-

charge occurs at DI under the head AJ)i, while the re-

mainder of the pipe acts merely as a channel to deliver

the flow. It usually happens that this change results in

a great diminution of the discharge, so that it has beea

necessary to dig up and relay portions of a pipe line which

have been inadvertently run above the hydraulic gra-

dient. This trouble can always be avoided by preparing
a profile of the proposed route, drawing the hydraulic

gradient upon it, and excavating the pipe trench well

below the^ gradient. In cases where the cost of this ex-

cavation is so great that it is resolved to lay the pipe

above the gradient, all the joints of the pipe above the

gradient should be made absolutely tight so that no air

can enter the pipe and interrupt the flow.

Prob. 38 A. A pipe 3 inches in diameter discharges 538 cubic

feet per hour under a head of 12 feet. What is the velocity in feet

per second?

Prob. 38 B. At a distance of 300 feet from the reservoir the pipe
in the last problem is 4.5 feet below the water surface of the reser-

voir. Compute the probable pressure-head at this point.

ART. 39. A COMPOUND PIPE

A compound pipe is one having different sizes in dif-

ferent portions of its length. The change from one

length to another should be made by a ''reducer/' which

is a conical frustrum several feet long, so that losses of

head due to sudden enlargement or contraction are

avoided. Let d\, dz, dS) etc., be the diameters; k, k, k,
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etc., the corresponding lengths, the total length being

/i+fe-h etc. Let v\, v2 , etc., be the velocities in the differ-

ent sections. Neglecting the loss of head at entrance

and also that lost in curvature, the total head h may be

placed equal to the loss of head in friction, or

Now if the steady discharge per second be q,

Vi = q/%-rrdi
2 V2= q/^irctf etc .

Substituting these velocities and solving for g, gives

in which the friction factors /i, /2 , etc., corresponding to

the given diameters and computed velocities are found

from the table in Art. 34.

For example, consider the case of a pipe having only

two sizes; let di = 2 and /i
= 2800 feet, c?2 =1.5 and /2

=

2145 feet, and h= 127.5 feet. Using for /i and /2 the

mean value, 0.02, and making the substitutions in the

formula, there is found g=26.2 cubic feet per second,

from which Vi = 8.3 and v2 =14.8 feet per second. Now
it is found that /i

= 0.015 and /2
= 0.015; and repeating

the computation, q
= 30.2 cubic feet per second, whence

t'i
= 9.6 and t;2 =17.1 feet per second. These results are

probably as definite as the table of friction factors will

allow, but are to be regarded as liable to an uncertainty

of five percent or more.

A compound pipe may be used to prevent the hydraulic

gradient from falling below the pipe line. Thus, it is

seen in Fig. 43 that the hydraulic gradient rises at DI
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and falls at D2 ,
and that its slope over the larger pipe is

less than over the smaller one. These slopes and the

amount of rise at DI can be computed for a given case.

Using the above numerical data, the loss of head in fric-

4 A A tion is by Art. 34 for

100 feet of the large

pipe h" =1.07 feet,

while the same for

the small pipe is 4.55~
43

feet. Hence the slope

of the gradients AC\
and CzC is more than four times as rapid as that of the

gradient EiE2 . In the large pipe at DI the velocity-head

is 0.01555 X9.62= 1.43 feet, and, supposing that no loss

occurs in the reducer, the velocity-head for the small

pipe is 4.55 feet. The vertical rise C^Ei of the hydraulic

gradient at DI is hence the rise in pressure-head

4.551.43 = 3.12 feet, and a fall of equal amount occurs

at D2
.

Prob. 39. Near Rochester, N. Y., there is a pipe 102 277 feet

long, of which 50 828 feet is 36 inches in diameter and 51 449 feet

is 24 inches in diameter. Under a head of 143.8 feet this pipe is

said to have discharged in 1876 about 14 cubic feet per second and

in 1890 about 103^ cubic feet per second. Compute the discharge

by the above formula, using the friction factors for riveted pipe
which are given in Art. 45.

Jfa ART. 40. HOUSE-SERVICE PIPES

A service pipe which runs from a street main B (Fig.

44) to a house is connected to the former at right angles,

and usually by a corporation cock or by a "ferrule." The
loss of head at entrance in such cases is hence larger than

in those before discussed, and m should probably be taken

as at least equal to unity. The pipe, if of lead, is fre-

quently carried around sharp corners by curves of small
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Fig. 44

radius; if of iron, these curves are formed by pieces form-

ing a quadrant of a circle into which the straight parts are

screwed, each curve causing a loss of head nearly equal

to double the velocity-head.

A water main should be so designed that a certain

minimum pressure-head hi exists in it at times of heaviest

draft. This pressure-

head may be repre-

sented by the height

of the piezometer col-

umn AB, which would

rise hi a tube supposed
to be inserted in the

main, as in Fig. 44.

The head h which

causes the flow in the

pipe is then the difference in level between the top of

this column and the end of the pipe, or AC. Insert-

ing for h this value, the formulas of Art. 38 may be ap-

plied to the investigation of service pipes in the manner
there illustrated. Since the sizes of common house-ser-

vice pipes are regulated by the practice of the plumbers
and by the market sizes obtainable, it is not often neces-

sary to make computations regarding the flow of water

through them.

The detection and prevention of the waste of water by
consumers is a matter of importance hi cities where the

supply is limited and where meters are not in use. Of

the many methods devised to detect this waste, one by
the use of piezometers may be noticed, by which an in-

spector without entering a house may ascertain whether

water is being drawn within, and the approximate amount

per second. Let M hi Fig. 45 be the street main from

which a service pipe MOH runs to a house H. At the
6
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edge of the sidewalk a tube OP is connected to the service

pipe, which has a three-way cock at 0, which can be

turned from above. The inspector, passing on his rounds

in the night-time, attaches

a pressure gage at P and

turns the cock so as to

shut off the water from the

house and allow the full

pressure of the main pi to

be registered. Then he

turns the cock so that the water may flow into the

house, while it also rises in OP and registers the pres-

sure pz. Then if pz is less than pi, it is certain that

waste is occurring in the house, and notice thereof is

given to the consumer.

When the pressure in the street main is very high, a

pressure regulator may be placed between the main and

the house in order to reduce the pressure and thus allow

lighter pipes to be used in the house. Fig. 46 shows the

principle of its action, where A represents the pipe from

the main and B the pipe leading to the house. A weight
W is placed upon a piston which covers the opening into

the chamber C. This weight and that of the piston are

sufficient to overcome a cer-

tain unit-pressure in C, and

therefore the unit-pressure

in B is less than that in A
by that amount. For ex-

ample, suppose the pressure

in A to be 100 pounds per

square inch, and let it be re-

quired that the pressure in B shall not rise above 60

pounds per square inch; then the piston must be so

weighted that it may exert on the water in C a pressure

Fig. 46
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of 40 pounds per square inch. When water is drawn
out anywhere along the pipe B, the pressure in the cham-

ber above the piston falls below 60 pounds per square

inch, and hence the piston rises and water flows from A
into B until the pressure is restored. Instead of a weight,

a spring is generally used, or sometimes a weighted lever.

Prob. 40 A. When the pressure in the main is 80 pounds per

square inch, what is the pressure-head in feet?

Prob. 40 B. When the pressure in the main is 80 pounds per

square inch, what is the pressure in the bath room when there is no

flow, the bath room being 36 feet higher than the main?

ART. 41. STEEL AND WOOD PIPES

All the preceding principles and formulas apply to

pipes of any kind, but the friction factors in Art. 34 are

for new clean cast-iron pipes. The diameters of such

pipes are rarely greater than 4 feet, and the largest ever

used are 5 feet.

Pipes 36 inches and larger in diameter have been made
of wrought-iron or steel plates riveted together. Wrought-

iron, however, is now but little used, on account of its

higher cost, except in the form of thin sheets for tempo-

rary pipes. Each section usually consists of a single

plate which is bent into the circular form and the edges
united by a longitudinal riveted lap joint. The differ-

ent sections are then riveted together in transverse joints

so as to form a continuous pipe. At AB (Fig. 47) is

shown the so-called taper joint, where the end of each

section goes into the end of the following one, as in a

stovepipe, the flow occurring in the direction from A to

B. At CD is seen the method of cylinder joints where

the sections are alternately larger and smaller. For the

large sizes double rows of rivets are used both in the
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longitudinal and transverse joints, the style of riveted

joint depending on the pressure of water to be carried by
the pipe. Riveted pipes have also been built with butt

Fig. 47

joints on both longitudinal and transverse seams, lap

plates being on the outside.

Owing to the friction caused by the rivets and joints

the discharge from riveted pipes is less than that from

cast-iron pipes in which the obstruction caused by the

joints is very slight. The following values of the friction

factor /, which have been derived from the data given by
Herschel, are applicable to new clean riveted pipes coated

with asphaltum in the usual manner.

Velocity in feet per second, v= 1 2 3^4 5

p . . j 3 ft. diam., /=0.035 0.029 0.024 0^2* 0.019
Cylinder joints

| 4ftd
.

amj /= 025 ^ ^ ^ ^
T . . j 3ift.diam., /= .025 .024 .023 .022 .022

(4ft. diam., /= .027 .026 .025 .024 .023

These friction factors are approximately double those

given for new cast-iron pipes in Art. 90, this increase being

largely due to the friction of the rivet heads and lapped

joints, though some of it is probably chargeable to the

roughness of the asphaltum coating. It must be noted

that these factors increase with age.

Wood pipes were used in several American cities dur-

ing the years 1750-1850, these being made of logs laid

end to end, a 3 or 4 inch hole having been first bored

through each log. Pipes formed of redwood staves were

first used in California about 1880, these staves being
held in place by bands of wrought-iron arranged so that
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they could be tightened by a nut and screw. Several

long lines of these large pipes have been built in the

Rocky Mountains and Pacific States. They have also

been used there for city mains to a limited extent.

Gagings of a wood pipe 6 feet in diameter made

by Marx, Whig, and Hoskins furnish values of the

friction factor / for velocities ranging from 1 to 5 feet

per second,

Velocity in feet per second, v = I 2 3 4 5

1897, /= 0.026 0.019 0.017 0.016

1899, /= .019 .018 .017 .017 .017

These values show that this wood pipe became smoother

after two years' use, while a steel pipe becomes rougher.

Prob. 41. Compute the discharge in gallons per day from a taper

jointed riveted steel pipe 2 miles long and 42 inches in diameter

when the slope of the hydraulic gradient is 17.5 feet per mile.

'tyls
ART. 42. A PIPE WITH A NOZZLE /I

Water is often delivered through a nozzle in order to

perform work upon a motor or for the purposes of hydrau-
lic mining, the nozzle being attached to the end of a pipe
which brings the flow from a reservoir. In such a case

it is desirable that the pressure at the entrance to the

nozzle should be as

great as possible, and "J"

this will be effected

when the loss of head

in the pipe is as small

as possible. The pres-

sure column in a pie-

zometer supposed to be

inserted at the end of the pipe, as shown at CiDi in Fig.

48, measures the pressure-head there acting, and the
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height AiCi measures the lost head plus the velocity-

head, the latter being very small.

Let h be the total head on the end of the nozzle, D its

diameter, and V the velocity of the issuing stream. Let

d and v be the corresponding quantit es for the pipe, and
/ its length. Then the effective velocity-head of the

issuing stream is V2
/2g, and the lost head is h V2

/2g.

This lost head consists of that lost at the entrance, that

lost in friction in the pipe, and lastly, that lost in the

nozzle. Then the principle of energy gives the equation

V2
v
2 J v

2 V2

Here m is determined by Art. 33, / by Art. 34, while mr

for the nozzle is found in the same manner as m is found

for the pipe, or m' = (1/Ci)
2

1, where Ci is the coefficient

of velocity for the nozzle (Art. 30). This value of m'

takes account of all losses of head in the nozzle, so that

it is unnecessary to consider its length; for a perfect

nozzle Ci is unity and m' is zero.

The velocities v and V are inversely as the areas of the

corresponding cross-sections (Art. 20), since the flow is

steady, whence V= v(d/D)
2

. Inserting this in the above

equation and solving for v gives

2gh

for the velocity in the pipe. The velocity and discharge

from the nozzle are then found by

V=(d/D) 2v q
= %irD*V

and the velocity-head of the jet is V2
/2g. These equa-

tions show that the greatest value of V obtains when D
is as small as possible compared to d

}
and that the great-
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est discharge occurs when D is equal to d. When the

object of a nozzle is to utilize the velocity-head of a jet,

a large pipe and a small nozzle should be employed.

As a numerical example, the effect of attaching a

nozzle to the pipe whose discharge was computed in Art.

35 will be considered. There Z=1500, d= 0.25, and h =

64 feet; ra= 0.5, v= 5.3 feet per second, and q
= 0.26 cubic

feet per second. Now let the nozzle be one inch in

diameter at the small end, or D = 0.0833 feet, and let its

coefficient ci be 0.98. Here d/D = 3, and for /= 0.025

the velocity in the pipe is

2X32.16X64
).5 + 0.025X1500X4+ 1.041X81

or v= 4.2 feet per second. The effect of the nozzle, there-

fore, is to reduce the velocity in the pipe. The velocity

of the jet at the end of the nozzle is, however,

V= v(d/D)
2= 37.S feet per second,

and the discharge per second from the nozzle is

5
=^D27= 0.206 cubic feet

which is about 20 percent less than that of the pipe before

the nozzle was attached. The nozzle, however, pro-

duces a marvelous effect in increasing the energy of the

discharge; for the velocity-head corresponding to 5.3

feet per second is only 0.44 feet, while that corresponding

to 37.8 feet per second is 22.2 feet, or about 50 times as

great. As the total head is 64 feet, the efficiency of the

pipe and nozzle is about 35 percent.

Fire hose is generally 2}^ inches in diameter. The

experiments of Freeman show that the friction factor /

ranges from 0.038 to 0.034 for unlined linen hose, from

0.030 to 0.029 for rough rubber-lined cotton hose, and
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from 0.024 to 0.018 for smooth rubber-lined cotton hose.

By using these values the above formulas are directly

applicable to fire hose.

Prob. 42 .4. What head is required to discharge 3 gallons per
minute through a new pipe 1 inch in diameter and 1000 feet long?

Prob. 42 B. Compute the diameter of a new pipe to deliver 50

gallons per minute under a head of 4 feet when the length is 5000 feet.

Prob. 42 C. How many 12-inch pipes are required to deliver the

same quantity of water as a pipe 60 inches in diameter?

Prob. 42 D. Which pipe will carry the greater quantity of water,
a cast-iron pipe 42 inches in diameter or a steel riveted pipe of 40

inches diameter?

Prob. 42 E. A 2^ inch unlined cotton hose is 480 feet long and

has a 1-inch. smooth nozzle at its end. Compute the discharge in

gallons per minute when the pressure at the hydrant or steamer is

100 pounds per square inch.
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-X

CHAPTER 5

FLOW IN CONDUITS AND RIVERS

ART. 43. DEFINITIONS

From the earliest times water has been conveyed from

place to place in artificial channels, such as troughs, aque-

ducts, ditches, and canals, there being no head to cause

the flow except that due to the slope. The Roman
aqueducts were usually rectangular channels about 2}^
feet wide and 5 feet deep, lined with cement, sometimes

running underground and sometimes supported on

arches. The word
"
conduit

"
will be used as a general

term for a channel of any shape lined with timber, mor-

tar, or masonry, and will also include troughs, sewers,

and large pipes. Conduits may be either open, as in the

case of troughs, or closed, as in sewers and most aque-
ducts. Ditches and canals are conduits in earth without

artificial lining. Most of the principles relating to con-

duits and canals apply also to streams, and the word

"channel" will be used as applicable to all cases.

The wetted perimeter of the cross-section of a channel

is that part of its boundary which is in contact with the

water. Thus, if a circular sewer of diameter d be half

full of water, the wetted perimeter is ]/2,ird. In this chap-
ter the letter p will designate the wetted perimeter.

The hydraulic radius of a water cross-section is its area

divided by its wetted perimeter, and the letter r will be

used to designate it. If a is the area of the cross-section,

the hydraulic radius of that section is found by r= a/p.
The letter r is of frequent occurrence in formulas for the

flow in channels; it is a linear quantity which is always
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expressed in the same unit as p, and hence its numerical

value is different in different systems of measures. It

is frequently called the hydraulic depth or hydraulic

mean depth, because for a shallow section its value is

but little less than the

mean depth of the

water. Thus, in Fig.

49, if b be the breadth

on the water surface, the mean depth is a/6, and the

hydraulic radius is a/p-, and these are nearly equal, since

the length of p is but slightly larger than that of b. The

hydraulic radius of a circular cross-section filled with

water is one-fourth of the diameter; thus

r = a/p =

The same value is also applicable to a circular section

half filled with water, since then both area and wetted

perimeter are one-half their former values.

The slope of the water surface :n the longitudinal sec-

tion, designated by the letter s, is the ratio of the fall h

to the length I in which that fall occurs, or s= h/l. The

slope is hence expressed as an abstract number, which is

independent of the system of measures employed. To
determine its value with precision h must be obtained by

referring the water level at each end of the line to a

bench-mark by the help of a hook gage or other accurate

means, the benches being connected by level lines run

with care. The distance I is not measured horizontally

but along the inclined channel, and it should be of con-

siderable length in order that the relative error in h may
not be large. If s= there is no slope and no flow; but

when there is even the smallest slope the force of gravity

furnishes a component acting down the inclined surface,

and motion ensues.
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The flow in a channel is said to be steady when the

same quantity of water per second passes through each

cross-section. Let ai, a2 ,
a3 , etc., be the areas at several

cross-sections and v\, v2 , etc., be the mean velocities, then

and when the discharge is known the mean velocities are

vi= q/a,i, Vi = q/az, etc. The definition of mean velocity

hence is that it is a velocity which multiplied by the area

of the cross-section gives the discharge, or v = q/a.

Prob. 43-4. Compute the hydraulic radius of a rectangular

trough whose width is 5.6 feet and depth 2.8 feet.

Prob. 43 B. The elevations of the water surface at two points

2.786 miles apart on a river are 627.318 and 642.407 feet. Compute
the slope s if the same is uniform.

ART. 44. FORMULA FOR MEAN VELOCITY

When all the wetted cross-sections of a channel are

equal, and the water is neither rising nor falling, having
attained the condition of steady flow, the flow is said to

be uniform. This is the case in a conduit or canal of

constant size and slope whose supply does not vary.

The same quantity of water per .second then passes each

cross-section, and consequently the mean velocity in each

section is the same. This uniformity of flow is due to

the resistances along the interior surface of the channel,

for were it perfectly smooth the force of gravity would

cause the velocity to be accelerated. The entire energy
of the water due to the fall h is hence expended in over-

coming resistances caused by surface roughness.

Let W be the weight of water passing any cross-section

in one second, F the force of friction per square unit

along the surface, p the wetted perimeter, and h the fall
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in the length L The potential energy of the fall is Wh.
The total resisting friction is Fpl, and the energy con-

sumed per second is Fplv, if v be the velocity. Accord-

ingly Fplv equals Wh But the value of W is wav, if w
is the weight of a cubic foot of water and a the area of

the cross-section in square feet. Hence Fpl= wah, and
since a/p is the hydraulic radius r, and h/l is the slope s,

this reduces to F wrs, which is an approximate expres-
sion for the resisting force of friction on one square unit

of the surface of the channel. In order to establish a
formula for the mean velocity the value of F must be

expressed in terms of v, and this can only be done from
the results of experiments which indicate that F is ap-

proximately proportional to the square of the mean
velocity. Therefore, if c is a constant, the mean velocity

(44)

is which is the formula of Chezy. This is really an em-

pirical expression, since the relation between F and v is

derived from experiments.

Another method of establishing Chezy's formula for

channels is to consider that when a pipe on a uniform

slope is not under pressure, the hydraulic gradient coin-

cides with the water surface. Then formula (44) may
be used by replac ng h" by h and d by its value 4r.

Accordingly

in which the quantity V80// is the Chezy coefficient c.

This coefficient c is different in different systems of

measures since it depends upon g. For the English sys-
tem it is found that c usually lies between 30 and 160,

and that its value varies with the hydraulic radius and
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the slope, as well as with the roughness of the surface.

To determine the value of c for a particular case the

quantities v, r, and s are measured, and then c is com-

puted. To determine v the flow must be gaged either

in a measuring vessel or by an orifice or weir, or, if the

channel be large, by floats or other indirect methods

described in the next chapter, and then the mean velocity

v is computed from v = q/a. It being a matter of great

importance to establ'sh a satisfactory formula for mean

velocity, thousands of such gagings have been made,

from which values of the coefficients have been deduced.

Prob. 44. Compute the value of c for a circular masonry con-

duit 6 feet in diameter which delivers 65 cubic feet per second when

running half full, its slope or grade being 1.5 feet in 1000 feet.

ART. 45. CIRCULAR CONDUITS

Circular conduits are large wood, steel, clay, and cement

pipes, and sewers and aqueducts of small size which are

laid in place in the trench. When such a conduit of

diameter d runs either full or half-full of water, the hy-
'

draulic radius r is ^d, and the Chezy formula for mean

velocity and the discharge are

v= c^Jrs q=av

in which r always has the value %d and a is either the

area of the circular section or one-half that area, as the

case may be.

The following values of c are for new coaduits having

quite smooth interior surfaces and no sharp bends:

Velocity in feet per second = 1 2 3 4 6 10

For diameter 3 feet, c = 117 124 128 133 136 143

For diameter 4 feet, c = 123 130 134 137 142 150

For diameter 5 feet, c = 128 134 139 142 147 155

For diameter 6 feet, c = 132 138 142 145 150

For diameter 8 feet, c = 137 143 148 151
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To use this table a tentative method must generally be

employed, since c depends upon the velocity of flow.

For this purpose there may be taken roughly

mean Chezy coefficient c= 125

and then v may be computed for the given diameter and

slope; a new value of c is then taken from the table and
a new v computed; and thus, after two or three trials,

the probable mean velocity of flow is obtained.

For example, let it be required to find the velocity and

discharge of a semicircular conduit of 6 feet diameter

when laid on a grade of 0.1 foot in 100 feet. Here r=

6/4 feet and

v = 125XKV6X 0.001 = 4.8 feet per second.

For this velocity the table gives 147 for c; hence

v=147XKV0.006 = 5.7 feet per second.

Again, from the table c= 150, and

t;=150XKV0.006 = 5.8 feet per second.

This shows that 150 is a little too large; for c = 149.5, v

is found to be 5.79 feet per second, which is the final

result. The discharge per second now is

= 0.7854X^X36X5.79 = 81.9 cubic feet,

which is the probable flow under the given conditions.

To find the diameter of a circular conduit to discharge

a given quantity under a given slope, the area a is to be

expressed in terms of d in the above equation, which is

then to be solved for d; thus
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the first being for a conduit running full and the second

for one running half full. Here c may be at first taken

as 125; then d is computed,
the approximate velocity

found from v = q/%ird?, and

with this value of v a value

of c is selected from the

table, and the computation
for d is repeated.

When a circular conduit of diameter d is filled to

the depth d' (Fig. 50), the wetted perimeter is

P = y^nd+d arc sin -5

and the sectional area of the water surface is

From these p and a can be computed, and then r is found

by dividing a by p. For any slope s the velocity v is the

greatest when r has its largest value and the discharge q

is the greatest when a Vr has its largest value. It can

l)e shown that the velocity is the greatest when d' = Q.8ld

and that the discharge is the greatest when d' = Q.95d;

also that the discharge is 5 percent greater when d' =
0.95d than when the conduit is entirely filled.

Prob. 45. Compute the diameter of a circular conduit for a dis-

charge of 81.9 cubic feet per second, the conduit running full and
the slope being 1 foot in 1000 feet.

ART. 46. RECTANGULAR CONDUITS

In designing an open rectangular trough or conduit to

carry water there is a certain ratio of breadth to depth
which is most advantageous, because thereby either the

discharge is the greatest or the least amount of material
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is required for its construction. Let b be the breadth

and d the depth of the water section, then the area a is

bd and the wetted perimeter p is b-\-2d. If the area a is

given, it may be required to find the relation between

b and d so that the discharge may be a maximum. If the

wetted perimeter p is given, the relation between b and

d to produce the same result may be demanded. In both

cases it can be shown that the breadth is double the depth,

or b = 2d. This is called the most advantageous propor-
tion for an open rectangular conduit.

The velocity and discharge through a rectangular con-

duit are expressed by the general equations

and are computed without difficulty for any given case

when the coefficient c is known. To determine this, how-

ever, is not easy, for it is only from recorded experiments
that its value can be ascertained. When the depth of

the water in the conduit is one-half of its width,^thus

giving the most advantageous section, the values of c

for smooth interior surfaces may be estimated by the use

of the table for circular conduits, although c is probably
smaller for rectangles than for circles of equal area.

Prob. 46 A. Compare the discharge of a trough 1X3 feet with

that of two troughs each 1X2 feet.

Prob. 46 B. Find the size of a trough, whose width is double

its depth, which will deliver 125 cubic feet per minute when its

slope is 0.002, taking the coefficient c as 100.

ART. 47. KUTTER'S FORMULA

An elaborate discussion of all recorded gagings of chan-

nels was made by Ganguillet and Kutter in 1869, from

which an important empirical formula was deduced for
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the coefficient c in the Chezy formula v= c^rs. The

value of c is expressed in terms of the hydraulic radius r,

the slope s, and the degree of roughness of the surface,

and may be computed when these three quantities are

given. When r is in feet and v in feet per second, Kut-

ter's formula for the Chezy coefficient c is

n

,+rWWVr

in which n is an abstract number whose value depends

only upon the roughness of the surface. By inserting this

value of c in the Chezy formula for v, the mean velocity

is made to depend upon r, s, and the roughness of the

surface. The following values of n were assigned by
Kutter to different surfaces:

n = 0.009 for well-planed timber,

n = 0.010 for neat cement,
n = 0.011 for cement with one-third sand,

n = 0.012 for unplaned timber,

n =0.013 for ashlar and brick work,
n = 0.015 for unclean surfaces in sewers and conduits,

n = 0.017 for rubble masonry,
n = 0.020 for canals in very firm gravel,

?i = 0.025 for canals and rivers free from stones and weeds,
n = 0.030 for canals and rivers with some stones and weeds,
n = 0.035 for canals and rivers in bad order.

The formula of Kutter has received a wide acceptance
on account of its application to all kinds of surfaces.

Notwithstanding that it is purely empirical, it is to be

regarded as a formula of great value, so that no design

for a conduit or channel should be completed without

employing it in the investigation, even if the final con-

struction be not based upon it. In sewer work it is ex-

7
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tensively employed, n being taken as about 0.015. The
formula shows that the coefficient c always increases

with r, that it decreases with s when r is greater than

3.28 feet, and that it increases with s when r is less than

3.28 feet. When r equals 3.28 feet, the value of c is

simply 1.811/n.

Extended tables showing the values of c for different

values of r and s may be found in the larger treatises on

hydraulics and also in the American Civil Engineer's

Pocket Book. But for a single case there is no difficulty

in directly computing it from the above formula. For

example, take a rectangular conduit lined with neat ce-

ment, 6 = 5.94 feet, d= 0.91 feet, s= 0.0049. Here n=

0.010, and r = 0.697 feet. Inserting all values in the for-

mula, there is found c = 148.

Prob. 47. Compute the value of c for a rectangular trough of

unplaned plank, 3.93 feet wide, in which the water is 1.29 feet deep,
the slope being 0.49 feet in 100 feet.

ART. 48. DITCHES AND CANALS

Ditches for irrigating purposes are of a trapezoidal

section, and the slope is determined by the fall between

the point from which the water is taken and the place of

delivery. If the fall is large, it may not be possible to

construct the ditch in a straight line between the two

points, even if the topography of the country should per-

mit, on account of the high velocity which would result.

A velocity exceeding 2 feet per second may often injure

the bed of the channel by scouring, unless it be protected

by riprap or other lining.

The principles of the preceding articles are sufficient to

solve all usual problems of uniform flow in such channels

when the values of the Chezy coefficient c are known.
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These are best determined by Kutter's formula. As an

example, let it be required to find the discharge for the

case of Fig. 51, the longitudinal slope s being 0.001, the

bottom width being 4.5 feet, the depth d being 5.5 feet,

the side slope being 45, ^zzz^ /mm
and the channel being in

tolerably good order so that n

in Kutter's formula is 0.025.

Here the top width is 15.5
Fig. 51

feet, the section area is 55.0

square feet, the wetted perimeter is 20.0 feet, and the

hydraulic radius is 2.75 feet. The value of c as com-

puted from Kutter's formula is 71. Then the velocity

isv = cVrs = 3.7 feet per second and the discharge through
the ditch is q

= av= 2Q3 cubic feet per second. This ve-

locity is so high that a very firm bed is required to resist

it, since a velocity of 2 feet per second on the bed moves

gravel and one of 3 feet per second moves pebbles one

inch in size. Hence if this problem is one of design the

bottom width should be increased and the depth of water

be decreased in order to dimmish the velocity and keep
the discharge at about 200 cubic feet per second.

A canal is a large ditch to which the above principles

and methods directly apply. For a navigation canal the

velocity should be quite small so that boats may not be

retarded when running against the current.

Prob. 48. A canal of trapezoidal section is 60 feet wide on the

top, the depth of water is 6 feet, and the sides make angles of 30

with the horizontal. Compute the wetted perimeter, the section

area, and the hydraulic radius.

ART. 49. STREAMS AND RIVERS

Steady flow in a river channel occurs when the same

quantity of water passes each section in each unit of time;
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here the mean velocities in different sections vary in-

versely as the areas of those sections. Uniform flow is

that particular case of steady flow where the sections

considered are equal in area. Non-steady flow occurs

when the stage of a river is rising or falling.

No branch of hydraulics has received more detailed

investigation than that of the flow in river channels, and

yet the subject is but imperfectly understood. The great

object of all these investigations has been to devise a

simple method of determining the mean velocity and dis-

charge without the necessity of expensive field operations.

In general it may be said that this end has not yet been

attained, even for the case of uniform flow. Of the

various formulas proposed to represent the relation of

mean velocity to the hydraulic radius and the slope,

none has proved to be of general practical value except
the empirical one of Chezy given in the last chapter, and

this is often inapplicable on account of the difficulty of

measuring the slope s and determining the coefficient c.

The fundamental equations for discussing the laws of

variation in the mean velocity v and the discharge q are

v= c Vrs q= a . c Vrs

where a is the area of the cross-section and r its hydraulic

radius, and all the general principles of the last chapter
are to be taken as directly applicable to uniform flow in

natural channels. Kutter's formula for c (Art. 44) is

probably the best in the present state of science, although
it is now generally recognized that it gives too large values

for small slopes. In using it the roughness factors for

rivers in good condition may be taken from Art. 44, but

for bad regimen n is to be taken at 0.03, and for violent

streams at 0.04 or greater.

When these formulas are used to determine the dis-
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charge of a river, a long straight portion or reach should

be selected where the cross-sections are as nearly as pos-

sible uniform in shape and size. The width of the stream

is then divided into a number of parts and soundings
taken at each point of division. The data are thus ob-

tained for computing the area a and the wetted perimeter

PJ from which the hydraulic depth r is derived. To de-

termine the slope s a length / is to be measured, at each

end of which bench-marks are established whose differ-

ence of elevation is found by precise levels. The eleva-

tions of the water surfaces below these benches are then

to be simultaneously taken, whence the fall h in the dis-

tance I becomes known. As this fall is often small, it is

very important that every precaution be taken to avoid

error in the measurements, and that a number of them
be taken in order to secure a precise mean.

Prob. 49. Which has the greater discharge, a stream 2 feet deep
and 80 feet wide on a slope of 1 foot per mile, or a stream 3 feet deep
and 40 feet wide on a slope of 2 feet per mile?

ART. 50. TRANSPORTING CAPACITY

It is well known that the water of rapid streams, trans-

ports large quantities of earthy matter, either in sus-

pension or by rolling it along the bed of the channel. It

is now to be shown that the diameters of bodies which

can be moved by the pressure of a current vary as the

square of its velocity, and that their weights vary as the

sixth power of the velocity.

When water causes sand or pebbles to roll along the

bed of a channel, it must exert a force approximately

proportional to the square of the velocity and to the area

exposed (Art. 18), or if d is the diameter of the body and

C a constant, the force which is required to move it hori-

zontally is F=Cd?vz
. But if motion just occurs, this
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force is also proportional to the weight of the body,
because the frictional resistance of one body upon an-

other varies as the normal pressure or weight. And as

the weight of a sphere varies as the cube of the diameter,
it follows that d? = Cd2v2

,
or d= Cv2

. Now since d varies

as v2
,
the weight of the body, which is proportional to d3

,

must vary as ^
6 ;

which proves the proposition enun-

ciated above. Hence an increase in velocity causes far

greater increase in transporting capacity.

Since the weight of sand and stones when immersed in

water is only about one-half their weight in air, the fric-

tional resistances to their motion are slight, and this helps

to explain the circumstance that they are so easily trans-

ported by currents of moderate velocity. It is found by
observation that a pebble about one inch in diameter is

rolled along the bed of a channel when the velocity is

about 3 J/2 feet per second; hence, according to the above

theoretical deduction, a velocity five times as great, or

17J/2 feet per second, will carry along stones of 25 inches

diameter. The following gives velocities in feet per
second which are required to move the materials stated.

Bottom Mean
velocity velocity

Clay fit for pottery, 0.3 0.4

Sand, size of anise seed, 0.4 0.5

Gravel, size of peas, 0.6 0.8

Gravel, size of beans, 1.2 1.6

Shingle, about 1 inch in diameter, 2.5 3.5

Angular stones, about 1J^ inches, 3.5 4.5

The general conclusion to be derived from these figures

is that ordinary small, loose earthy materials will be

transported or rolled along the bed of a channel by ve-

locities of 2 or 3 feet per second. It is not necessarily to

be inferred that this movement of the materials is of an

injurious nature in streams with a fixed regimen, but in
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artificial canals the subject is one that demands close

attention. The velocity of the moving objects after

starting has been found to be usually less than half that

of the current.

Prob. 50. In the early history of the earth the moon was half its

present distance from the earth's center, and the tides were about

eight times as high as at present. It is supposed that these tides

. rolled over the low lands and moved great rocks from place to place.

The highest velocity of such a wave is v' gd, where d is the depth of

the water. What is the probable weight and size of the largest rock

that such a current would move?

ART. 51. STEADY NON-UNIFORM FLOW

When the cross-sections of a stream vary in size, as is

generally the case, and the same quantity of water passes

through each section in the same time, the condition called

non-uniform flow arises. The surface slope of the water

is here not parallel to the bed when the bed has a uniform

slope, but is usually either concave or convex to the bed.

These two cases are shown' in Figs. 52 and 53, where BB

Fig. 52 Fig. 53

is the bed of the stream which has the uniform slope i

and CC is the slope of the water surface when the steady
now is uniform.

The backwater curve shown in Fig. 52 occurs when a

dam or other obstruction exists downstream which has the

effect of raising the water level, then the water surface

rises to AA and the surface curve becomes tangent to CC
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when d equals D, which may be a long distance upstream.
The backwater curve is a fruitful source of litigation

because it always extends upstream a much greater dis-

tance than is at first supposed. The down-drop curve

shown in Fig. 53 occurs when water is drawn out of a

stream or canal for power or irrigation. Here the curve

is concave to the bed and it becomes tangent to the orig-

inal surface CC only at a long distance up stream.

At any point the inclination of the surface curve to the

bed BB is given by
g v

2
c 2di

c 2
v
2

gd

where d is the mean depth of the water, i the slope of the

bed, v the mean velocity, c the Chezy coefficient, and g

the acceleration of gravity. When v is equal to c-^di,

then s= 0, and the slope s is parallel to the bed of the

stream. When v is less than c^di the backwater curve

of Fig. 52 results. When v is greater than c Vcfo' the drop
down curve of Fig. 53 results.

A very curious phenomenon which sometimes occurs

in shallow channels is that of the so-called "jump," as

shown in Fig. 54. This happens when the denominator

in the above formula is

zero; then s is infinite,

and the water surface

stands normal to the bed.

Fig. 54 Placing that denominator

equal to zero, there is

found vz =gd. Above the jump where the depth is di

the velocity is slightly greater than Vflfdi, and below

it is less than -\lgdi- The slope i of the bed must

be greater than g/c
2 in order that the jump may

occur. The height d2 di ranges from twice to four
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times the depth d\ and is rarely as large as one or two

feet.

A more striking case of a vertical water front is seen

when a large body of water moves down a canon after a

heavy rainfall, or when a reservoir bursts and allows a

large discharge to suddenly escape down a narrow valley

(Fig. 55). In the great flood of 1889 at Johnstown, Pa.,

such a vertical wall of water,

variously estimated at from 10

to 30 feet in height, moved down
,, . . ''

the valley, carrying on its front

brush and logs mingled with

spray and foam. In 41 minutes it traveled a distance of

13 miles down the descent of 380 feet; the velocity was

hence about 28 feet per second. The theoretic velocity

being v= -*Jgd, the value of d found from this equation
is 24 feet.

The tidal bore, which occurs in many large rivers when
the tide flows in at their mouths, obeys similar laws. The

great bore at Hangchow, China, which occurs twice a

year, is said to travel up the river at a rate of from 10 to

13 miles per hour, the height of the vertical front being
from 10 to 20 feet. From v= ^gh, the velocity corre-

sponding to a depth of 10 feet is 12.6 miles per hour, while

that corresponding to a depth of 20 feet is 17 miles per

hour, so that the statements have a fair agreement with

the theoretical law.

Prob. 51 A. Bidone, who was the first to make experiments on

the jump, found for Vi = 5.59 feet per second and di = 0.208 feet, that

the depth da was 0.613 feet. The jump formula being d2
=2V/d1y12/20,

compute the theoretic depth dj.

Prob. 51 B. A stone weighing 0.5 pounds is moved by a current

of 3 feet per second; what is the weight of a stone which will be

moved by a current of 9 feet per second?
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CHAPTER 6

MEASUREMENT OF WATER

ART. 52. DIRECT METHODS

Some of the most important practical problems of

Hydraulics are those of the measurement of the amount

of water discharged in one second by an orifice, pipe, con-

duit, or river. When the discharge is quite small a very

precise way is to catch it in a barrel which is set on the

platform of a weighing scale and thus ascertain the weight
which is delivered in a given time, from which by Art. 3

the total volume can be computed, and then the discharge

per second is equal to this volume divided by the number
of seconds elapsed during the experiment. A larger

quantity may be measured in a rectangular tank, the

section area of which is accurately known ;
here the height

of the water surface is

noted at the beginning
and end of the experi-

ment, and the volume

is then found by multi-

plying the area by the

difference of the two

heights.

Large quantities of

water are sometimes

measured in the reser-

voir of a city supply.
A precise contour map of the reservoir being made (Fig.

56), the volume between successive contour planes is

computed. Then as the water enters the height of the

Fig. 56
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surface is determined at regular intervals of time, and

from these data the discharge into the reservoir can be

computed.

The height of the water level may be read on a fixed

scale board, or a glass gage tube may be set upon which

the height of the water surface above the orifice can be

read at any time during the experiment (Fig. 57). An-

other method is to have a

float on the water surface,

the vertical motion of which

is communicated to a cord

passing over a pulley, so that

readings can be taken on a

scale as the weight at the

lower end of the cord moves

up or down. For very many cases, however, these methods

are not sufficiently precise, and the hook gage is then used.

A hook gage consists of a rod at the lower end of which

is a hook which can be raised or lowered until its sharp

point is at the water level (see Fig. 60). Just before the

point of the hook pierces the skin of the water (Art. 2) a

pimple or protuberance is seen to rise above it. The hook

is supported by a graduated rod upon which readings can

be taken, by help of a vernier, to thousandths of a foot.

Another method of gaging is by making measurements

on the velocity of the water, from which and the known
section areas the discharge can be computed. The prin-

cipal ways of measuring the velocities of flowing water

will be briefly described in the following pages. While

this method is only partially direct it is one which must

necessarily be used when large quantities are involved.

Water measurement by means of weirs is an indirect

method, since it depends upon coefficients which have

been established through direct gagings. But such co-
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efficients are so much more accurately known than those

of orifices, conduits, and streams that the errors in them

may be regarded as very small. Moreover, weirs may
be used for both small and moderately large quantities of

water and when once built the expense of taking the nec-

essary readings is not great. Weirs are generally used

in tests of hydraulic motors for measuring the water that

flows through them.

The miner's inch is a unit of water measurement used

in mining operations in the western part of the United

States. It may be roughly denned to be the quantity of

water which will flow from a vertical standard orifice one

inch square, when the head on the center of the orifice is

6J^ inches. From Art. 26 the coefficient of discharge is

seen to be about 0.623 and accordingly the actual dis-

charge from the orifice in cubic feet per second is q
=

Vi44X 0.623X 8.02 V6.5/12 = 0.0255 and the discharge in

one minute is 60X0.255=1.53 cubic feet. The mean
value of one miner's inch is therefore about 1.5 cubic feet

per minute. The actual value, however, varies in different

states. In California 40 miner's inches make one cubic

foot per minute, in Colorado 38.4 is the equivalent, while

in other states it is 50. The miner's inch as a unit for

water measurement is awkward and confusing, and it is

greatly to be desired the cubic foot per second should

always be used.

Prob. 52 A. Water flows from an orifice uniformly for 89.3 sec-

onds and falls into a barrel on a platform weighing scale. The

weight of the empty barrel is 27 pounds and that of the barrel and

water is 276 pounds. What is the discharge of the orifice in gallons

per minute, when the temperature of the water is 62 Fahrenheit?

Prob. 52 B. Let the areas within the contour curves AB and

CD in Fig. 56 be 84 320 and 79 624 square feet, their vertical 'dis-

tance apart being 5 feet. Also let the area of the contour half-wav
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between AB and CD be 82 150 square feet. Compute the volume

in cubic feet included between AB and CD.

ART. 53. STANDARD WEIRS

A weir is a notch in the top of the vertical side of a

vessel or reservoir

through which water

flows. The notch is

generally rectangular,

and the word "weir"

will be used to desig-

nate a rectangular

notch unless otherwise

specified, the lower

edge of the rectangle

being truly horizontal,

and its sides vertical.

The lower edge of the

rectangle is called the "crest" of the weir. In Fig. 58 is

shown the outline of the most usual form, where the ver-

tical edges of the notch

are sufficiently removed

from the sides of the res-

ervoir or feeding canal,

so that the sides of the

stream may be fully con-

tracted; this is called a

weir with end contrac-

tions. In the form of

Fig. 59 the edges of the

notch are coincident
Flg ' 59

with the sides of the

feeding canal, so that the filaments of water along the

sides pass over without being deflected from the vertical

Fig. 58
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planes in which they move; this is called a weir without

end contractions, or with end contractions suppressed.

It is necessary in order to make accurate measurements
of discharge by a weir that the same precaution should be

taken as for orifices (Art. 21); namely, that the inner edge
of the notch shall be a definite angular corner so that the

water in flowing out may touch the crest only in a line,

thus insuring complete contraction, as in Fig. 60. In

precise observations a thin metal plate will be used for a

crest, while in common work it may be sufficient to have

the crest formed by a plank of smooth hard wood with

its inner corner cut to a sharp right angle.

Weirs are extensively used for measuring the discharge
of small streams, and for determining the quantity of

water supplied to hydraulic motors; the practical im-

portance of the subject is so great that numerous experi-

ments have been made to ascertain the laws of flow, and
the coefficients of discharge. Since the head on the crest

of a weir is small, it must be

determined with precision in

order to avoid error in the

computed discharge. The
hook gage, seen in Fig. 60,

Fig. eo is generally used for accurate

work. For rough gagings of

streams the heads may be determined by setting a post
a few feet upstream from the weir and on the same level

as the crest, and measuring the depth of the water over

the top of the post by a scale graduated to tenths and
hundredths of a foot.

The head H on the crest of the weir is in all cases to be

measured several feet upstream from the crest, as indi-

cated in Fig. 60. This is necessary because of the curve
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taken by the surface of the water in approaching the weir.

The distance to which this curve extends back from the

crest of the weir depends upon many circumstances, but

it is generally considered that perfectly level water will

be found at 2 or 3 feet back of the crest for small weirs,

and at 6 or 8 feet for very large weirs. It is desirable

that the hook should be placed at least one foot from the

sides of the feeding canal, if possible.

Prob. 53 A. If a feeding canal 3.5 feet wide discharges 12 cubic

feet per second when the water is 2.1 feet deep, what is the mean

velocity of flow?

Prob. 53 B. A hook gage reads 0.207 feet when its point is at

the level of the crest of a wen-. What is the head H when the

water level is read as 0.631 feet?

ART. 54. DISCHARGE OVER A WEIR

For a weir with end contractions (Fig. 58) which has

the length 6 and on whose crest the head is H (Fig. 60),

the theoretic discharge is found from the second formula

of Art. 26 by making hi = and h2
= H. Then

and introducing the coefficient of discharge c,

q
= c.%Tj2~g.bH

%
(54)

is the formula for computing the actual discharge.

The following table gives values of the coefficient c to

be used for contracted weir (Fig. 58) in the above formula.

Length of crest in feet, 6 = 0.66 1 2 3 5 10

For #=0.1 feet, c= 0.632 0.639 0.646 0.652 0.653 0.656

For #=0.15 feet, c= .619 .625 .634 .638 .640 .641

For H = 0.2 feet, c= .611 .618 .626 .630 .631 .633

For H = 0.25 feet, c= .605 .612 .621 .624 .626 .628

For H = 0.3 feet, c= .601 .608 .616 .619 .621 .624

For H = 0.4 feet, c= .595 .601 .609 .613 .615 .618

For # = 0.6 feet, c= .587 .593 .601 .605 .608 .613
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As an example of the use of the formula and table, let

it be required to find the discharge per second over a

contracted weir 4 feet long when the head // is 0.457 feet.

From the table the coefficient of discharge is 0.614 for

#= 0.4 and 0.6065 for # =
0.6, which gives about 0.612

when # = 0.457. Then the discharge per second is

<2
= 0.612X%X8.02X4X0.457 /2 = 4.04 cubic feet.

Weirs without end contractions (Fig. 59) have a dis-

charge from 1 to 6 percent greater than contracted weirs,

the greatest differences being when the length 6 is short.

For very long weirs the discharges of the two kind of

weirs are practically equal. For precise measurements

of discharge, weirs with end contractions are always pre-

ferred, and velocity of approach is to be taken into

account in the computation in the manner described in

Merriman's Treatise on Hydraulics.

Prob. 54 A. Find from the table the coefficient of discharge for

a contracted weir 2.5 feet long, when the head on the crest is 0.237

feet.

Prob. 54 B. Compute the discharge for a contracted weir 5 feet

long when the head on the crest is 0.268 feet.

ART. 55. OTHER WEIR FORMULAS

J. B. Francis made in 1854 extensive experiments on

weirs and deduced the following formulas for discharge.

These formulas, although derived from large weirs, are

extensively used, when approximate results are alone re-

quired, for weirs of length greater than 4 feet and heads

greater than 0.4 feet. The length b and the head H being

expressed in feet, and the discharge in cubic feet per sec-

ond, the formula for weirs with end contractions is
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and that for weirs without end contractions is

Here the number 3.33 is % c^2g where c is the true co-

efficient of discharge. The 88 experiments from which

this number was deduced show that the coefficient 3.33

actually ranged from 3.30 to 3.36, so that the use of the

formula may perhaps give an error of one percent in the

computed discharge.

A waste weir is a rectangular notch in the top of a dam
which allows the surplus water to escape. Waste weirs

usually have wide and rounded crests. The formula

is employed for these, the value of M ranging from 2.5

to 4.0. When the crest is narrow and the front vertical

M is 3.33, as in Francis' formula. When the crest is about

3 feet wide and level, with an inclined approach back of

it, M is about 3.01. This formula is also used for finding

the approximate discharge of a stream across which a

dam has been built. For this purpose the proper coeffi-

cient must be selected from records of experiments which

are found in more extended treatises on hydraulics.

Triangular weirs are sometimes used for the measure-

ment of small quantities of water, the arrangement being
shown in Fig. 61. Such

a weir must have sharp
inner corners, so that the

Stream may be fully con-

tracted, and the sides

should have equal slopes,

and the angle at the vertex should be a right angle. The

depth of water above this lower vertex is to be measured

by a hook gage in the usual manner at a point several

7
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feet upstream from the notch. The formula for the dis-

charge is q= 2.53H% in which H must be in feet and q is

in cubic feet per second.

Trapezoidal weirs (Fig. 62) are sometimes used instead

of rectangular ones. The

slope of the sides should

be 4 on 1 or z/H= ^,
and the other arrange-

ments as in the weir with

end contractions. The
formula for the dis-

charge is q= 3.367bH% in which b is the length of the crest

in feet, H being in feet and q in cubic feet per second.

Prob. 55 A. For a weir with end contractions 6 = 7 feet and
# = 0.457 feet. Compute the discharge by Francis' formulas.

Prob. 55 B. Compute the discharges through a triangular weir

when H = 1 foot and H =2 feet.

ART. 56. WATER METERS

Meters used for measuring the quantity of water sup-

plied to a house or factory are of the displacement type;

that is, as the water passes through the meter it displaces

or moves a piston, a wheel, or a valve, the motion of which

is communicated through a train of clock wheels to dials

where the quantity that has passed since a certain time

is registered. There is no theoretical way of determining
whether or not the readings of the dial hands are correct,

but each meter must be rated by measuring the discharge

in a tank. Several meters may be placed on the same

pipe line in this operation, the same discharge then pass-

ing through each of them. When impure water passes

through a meter for any length of time, deposits are liable

to impair the accuracy of its readings, and hence it should

be rerated at intervals.
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The piston meter is one in which the motion of the

water causes two pistons to move in opposite directions,

the water -leaving and entering the cylinders by ports

which are opened and closed by slide valves somewhat

similar to those used in the steam-engine. The rotary

meter has a wheel enclosed in a case so that it is caused

to revolve as the water pases through. The screw meter

has an encased helical surface that revolves on its axis

as the water enters at one end and passes out at the other.

The disk meter has a wabbling disk so arranged that its

motion is communicated to a pin which moves in a circle.

In all these, and in many other forms, it is intended that

the motion given to the pointers on the dials shall be pro-

portional to the volume of water passing through the

meter. The dials may be arranged to read either cubic

feet or gallons, as may be required by the consumers.

The Venturi meter, named after the distinguished

hydraulician who first experimented on the principle by
which it operates, was invented by Herschel in 1887.

Fig. 63 shows a horizontal pipe having an area a\ at each

Fig. 63

end, and the central part contracted to the area 02, with

two small piezometer tubes into which the water rises.

When there is no flow, the water stands at the same level

in these two columns, but when it is in motion, the heights

of these columns above the axis of the pipe are hi and hz .

Let v\ and vz be the mean velocities in the two cross-sec-
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tions. Then by Art. 24 the effective head in the upper
section is hi+vi2

/2g, and that in the small section is

hz+V22
/2g; if there be no losses caused by friction, these

two expressions must be equal, and hence by the theorem

of Art. 20, v2
2 -vi2= 2g(hi-h2). Now let Q be the dis-

charge through the pipe, or Q = aiVi and also Q= a2v2 .

Taking the values of Vi and v2 from these, inserting them
in the above equation, and solving for Q, gives

which may be called the theoretic discharge. Owing to

frictional losses which occur between the two cross-sec-

tions, the actual discharge q is always less than Q, or q=

cQ, in which c is a coefficient whose value generally lies

between 0.95 and 0.99.

The two water columns shown in Fig. 63 may be led

to a mercury gage where the difference hih2 is shown

by the difference in level of the mercury columns. But

usually in practise an automatic recording apparatus is

employed, a pointer carrying a pen being moved as the

difference hi hz varies, so that the actual discharge q at

every instant is recorded on a paper dial. The Venturi

meter is used for measuring the discharge through pipes

two inches or more in diameter, the largest meters of this

type yet undertaken being those for the new Catskill

water system of the city of New York. Each of these

meters has a capacity of 650 000 000 gallons per day,

the diameter of each end of the meter tube being 210

inches, while that at the contracted section is 93 inches.

Prob. 56. A 12-inch pipe delivers 810 gallons per minute through
a Venturi meter, 02 being one-ninth of a\. Compute the mean ve-

locities in the sections ai and a2 . If the pressure-head in 01 is 21.4

feet, compute the pressure-head in Oj.
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ART. 57. THE PITOT TUBE

About 1750 the French hydraulic engineer Pitot in-

vented a device for measuring the velocity in a stream by
means of the velocity-head which it will produce. In its

simplest form it consists of a bent tube, the mouth of

which is placed so as to directly face the current (Fig.

64) . The water then rises in the vertical part of the tube

Fig. 64 Fig. 65

to a height h above the surface of the flowing stream, and

this height is equal to the velocity-head v2/2g, so that

the actual velocity v is in practice approximately equal

to V207i. As constructed for use in streams, Pitot's appa-
ratus consists of two tubes placed side by side with their

submerged mouths at right angles, so that when one is

opposed to the current, as seen in Fig. 65, the other

stands normal to it, and the water surface in the latter

tube hence is at the same level as that of the stream. Both

tubes are provided with cocks which may be closed while

the instrument is immersed, and it can be then lifted

from the water and the head h be read at leisure. It is

found that the actual velocity is always less than V2gr/i,

and that a coefficient must be deduced for each instru-

ment by moving it in still water at known velocities.

In 1888 Freeman made experiments on the distribu-

tion of velocities in jets from nozzles, in which an im-
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proved form of Pitot tube was used. The point of the

tube facing the current was the tip of a stylographic pen,
the diameter of the opening being about 0.006 inch. This

point was introduced into different parts of the jet and

the pressure caused in the tube was measured by a Bour-

don pressure gage reading to single pounds. The ve-

locities of the jets were high, often over 50 feet per second.

He concluded that any velocity as determined by the

tube was smaller than that computed from v= ^2gh by
less than one percent. This investigation established the

fact that the Pitot tube is an instrument of great pre-

cision for the measurement of high velocities.

Prob. 57. Consult Engineering News, May 4, 1911, and ascer-

tain how a Pitot tube may be used to determine the speed of a boat

or ship.

ART. 58. THE CURRENT METER

In 1790 the German hydraulic engineer Woltmann
invented an apparatus for measuring the velocity of flow-

ing water which was later improved and is now exten-

sively used for gaging streams and other open channels.

This meter is like a windmill, having three or more vanes

mounted on a spindle and so arranged that the face of

the wheel always stands normal to the direction of the

current, the pressure of which causes it to revolve. The
number of revolutions of the wheel is approximately

proportional to the velocity of the current. In the best

forms of this instrument the number of revolutions made
in a given time is determined and recorded by an appa-
ratus placed near the observer on a bridge, in a boat, or

elsewhere. In these forms an electric connection is made
and broken at every fifth revolution and a dial on the

recording apparatus affected. By means of a telephone

receiver the making and breaking of the circuit can be

made audible to the observer, who in such case simply
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keeps count of the number of clicks and observes on a

stop-watch the time elapsed during a given number of

revolutions.

A current meter cannot be used for determining the

velocity in a small trough or channel, since the introduc-

tion of it into the cross-section would contract the area

and cauae a change in the velocity of the flowing water.

In large conduits, canals, and rivers it is, however, a con-

venient and accurate instrument. By simply holding it

at a fixed position below the surface, the velocity at that

point is found; by causing it to descend at a uniform

rate from surface to bottom, the mean velocity in that

vertical is obtained; and by passing it at a uniform rate

over all parts of the cross-section of a channel, the mean

velocity v can be directly determined. For velocities

greater than 5 feet per second, the use of the current

meter is very difficult.

To derive the velocity of the water from the number of

recorded revolutions per second the current meter must

first be rated by placing it on a car which is pushed at

a known velocity through still water. The best place

for doing this is in a pond or navigation canal, where the

water has no sensible velocity. It is found that the

velocity of the car is not exactly proportional to the

recorded number of revolutions, but is usually expressed

by the equation V= a-}-bn where V is the velocity and

n the number of revolutions per second, and a and b are

constants which differ for different conditions.

Prob. 58. For velocities of 0.7 and 4.2 feet per second the num-
ber of revolutions per second of the wheel of a current meter were

found to be 0.5 and 2.0. Find the constants a and b in the equation
V = a+bn.
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ART. 59. GAGING OF STREAMS

For any orifice, tube, conduit, or stream let a be the

area of the cross-section and v the uniform velocity, then

the discharge is q
=

av, hence, if a and v can be found by

measurement, q is known. In fact, however, the velocity

varies in different parts of a cross-section, so that the

determination of v cannot be directly made. Yet there

always is a certain value for v, which multiplied into a

will give the actual discharge q, and this value is called

the mean velocity.

In the case of a stream or open channel the velocity is

much less along the sides and bottom than near the

middle. A rough determination of the mean velocity

may be made, however, by observing the greatest surface

velocity by a float, and taking eight-tenths of this for the

approximate mean velocity. Thus, if the float requires

50 seconds to run 120 feet, the mean velocity is about

1.9 feet per second; then if the cross-section be 820

square feet, the discharge is 1560 cubic feet per second.

A common method of finding the discharge of a stream

is to subdivide the cross-section into parts and determine

their areas i, 02, etc.,

the sum of which is

JE^Bit^i^F the total area a (Fig.

66). Then, if vi, v2 ,

Fig 66 etc., are the mean
velocities in these

areas as determined by observations, the discharge of

the stream is

q
=

Here the mean velocities may be roughly found by ob-

serving the passage of a surface float at the middle of

each subdivision and multiplying this surface velocity by
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0.86. By the use of a current meter, passing it down and

up through the middle of each subdivision, much closer

values may be determined. When q has been computed,
the mean velocity v may be derived from v = q/a.

Gages for reading the stages of water are now set up
on many rivers, and daily observations are taken. Such

a gage is usually a vertical board graduated to feet and

tenths and set if possible with its zero below the lowest

known water level. Another form is the box-and-chain

gage, which consists of a box fastened on a bridge with a

graduated scale within it and a chain that can be let down
to the water level; the length of the chain being known,
the gage height can then be read from the scale. Such

observations of the daily stage of a river are of great

value in planning engineering constructions, and they are

now made at many stations by the United States govern-

ment. An approximate rule for the variation in velocity

and discharge with small changes in depth is the follow-

ing: when the mean depth changes 1 percent the mean

velocity changes 0.5 percent and the discharge changes
1.5 percent.

When several measurements of the discharge of a

stream have been made for different stages of water, a

curve may be drawn to show the law of variation of dis-

charge, and from this curve the discharge corresponding
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to any given stage of water may be approximately ascer-

tained. Fig. 67 shows the actual discharge curve for the

Lehigh River at Bethlehem, Pa., the ordinates being the

heights of the water level as read on the gage, and

the abscissas being the discharges of the river in cubic

feet per second. Each station on a river has its

own distinctive discharge curve, for the local topo-

graphy influences the heights to which the water level

will rise.

Prob. 59 A. A stream of 4 feet mean depth delivers 800 cubic

feet per second. What will be the discharge when the depth is

decreased to 3.87 feet; what will be the velocity when the depth is

4.12 feet?

Prob. 59 B. A circular conduit pipe, 3 feet in diameter, is divided

into three parts by concentric circles whose diameters are 1 and 2

feet. The mean velocities in the three parts are found to be 6.6,

4.8, and 3.0 feet per second. Compute the discharge and mean

velocity.

ART. 60. VELOCITIES IN A CROSS SECTION

By means of the Pitot tube and the current meter

velocities in different parts of many cross-sections have

been measured. At the contracted section of a jet from

an orifice all the velocities are found to be equal to the

velocity due to the head. For a pipe the greatest velocity

is found to be at the center and the least along the cir-

cumference of the cross-section, while the mean velocity

is about 84 percent of that at the center. Hence a Pitot

tube with its tip at the center of the pipe will determine a

fair value of the mean velocity.

For a conduit or aqueduct running partly full, the

greatest velocity is near the middle of the section but

some distance below the surface, while the smallest

velocities are at the sides and along the bottom. Dia-

grams showing the distribution for large aqueducts may
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be seen in Merriman's Treatise on Hydraulics, Ninth Edi-

tion, page 310.

In Fig. 68 there is shown at A a cross-section of a stream

with contour curves of equal velocity; here the greatest

velocity is seen to be near the deepest part of the section

Fig. 68

a short distance below the surface. At B is shown a plan

of the stream with arrows roughly representing the sur-

face velocities; the greatest of these is seen to be near

the deepest part of the channel, while the others dimin-

ish toward the banks, the curve showing the law of varia-

tion resembling a parabola. At C is shown by arrows

the variation of velocities in a vertical line, the smallest

being at the bottom and the largest a short distance below

the surface; concerning this curve there has been much

contention, but it is commonly thought to be a parabola
whose axis is horizontal. These are the general laws of

the variation of velocity throughout the cross-section;

the particular relations are of a complex character, and

vary so greatly in channels of different kinds that it is

difficult to formulate them The ratio of the mean ve-

locity to the maximum surface velocity in a river is usually

about 0.80. The ratio of the mean velocity in any ver-

tical to the surface velocity in that vertical is usually

about 0.86. By measuring the velocity at the mid-depth
in any vertical a very close approximation to the mean



124 MEASUREMENT OF WATER CH. 6

velocity in that vertical is obtained. A wind blowing

upstream decreases the surface velocities and one blow-

ing down stream increases them, without materially

affecting the mean velocity.

Prob. 60 A. A stream 60 feet wide is divided into three sections,

having the areas 32, 65, and 38 square feet, and the surface veloci-

ties near the middle of these sections are found to be 1.3, 2.6, and
1.4 feet per second. Compute the approximate discharge and mean

velocity.

Prob. 60 B. When there is a bend in a stream, at what part of

the cross-section is the water the deepest?

Prob. 60 C. What should be the length of a waste weir in order

to carry one inch of rainfall per hour in a watershed of 3 square

miles, the head on the crest of the weir being 2.5 feet?
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CHAPTER 7

HYDRAULIC MOTORS

ART. 61. EFFICIENCY OF A MOTOR

A hydraulic motor is an apparatus for utilizing the

energy of a waterfall. It generally consists of a wheel

which is caused to revolve either by the weight of water

falling from a higher to a lower level, or by the dynamic

pressure due to the change in direction and velocity of a

moving stream. When the water enters at only one

part of the circumference, the apparatus is called a water

wheel;, when it enters around the entire circumference,

it is called a turbine. The efficiency of a motor is the

ratio of the work actually utilized to the theoretic energy.

When the efficiency e is unity all of the theoretic energy
is utilized, when e is zero none is utilized. The efficiency

of hydraulic motors may range from 0.25 to 0.95; that is,

the work actually performed by them may range from

25 to 95 percent of the theoretic energy of the waterfall.

When a weight of water W falls in each second through
the height h, or when it is delivered with the velocity v,

its theoretic energy per second is

K= Wh or K= Wvz
/2q

The actual work per second equals the theoretic energy
minus all the losses of energy. These losses may be di-

vided into two classes: first, those caused by the trans-

formation of energy into heat; and second, those due to

the velocity v\ with which the water leaves the wheel.

The first class includes losses in friction, and losses in

foam and eddies. Let the loss of work due to this be
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Wh', in which h f
is the head lost by these causes. The

second loss is due merely to the fact that the departing
water carries away the energy W.Vi2

/2g. The work per
second imparted by the water to the wheel then is

and dividing this by the theoretic energy, the efficiency is,

e=l-h'/h-vi*/2gh

This formula is the basis of all discussions on the theory
of water wheels and motors. It shows that e can only
become unity when h' = and Vi = 0, and accordingly the

two following fundamental conditions must be fulfilled

in order to secure high efficiency:

1. The water must enter and pass through the wheel without

losing energy in friction and foam.

2. The water must reach the level of the tail race without

absolute velocity.

These two requirements are expressed in popular lan-

guage by the well-known maxim "the water should enter

the wheel without shock and leave without velocity."

Here the word "shock" means that method of introduc-

ing the water upon the wheel which produces foam and

eddies. It is the constant aim of designers to so arrange
wheels as to avoid these losses and thus render the effi-

ciency as high as possible.

Prob. 61. A wheel using 70 cubic feet of water per minute under

a head of 12.4 feet has an efficiency of 63 percent. What effective

horse-power does it deliver?

ART. 62. OVERSHOT WHEELS

In the overshot wheel the water acts largely by its

weight. Fig. 69 shows an end view or vertical section,

where h is the total fall from the surface of the water in
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the head race or flume to the surface in the tailrace

This total fall may be divided into three parts: that in

which the water is filling the buckets, that in which the

water is descending in the filled buckets, and that which

remains after the buckets are emptied. Let the first of

these parts be called /*
,
and the last hi. In falling the

distance h the water acquires a velocity v which is ap-

proximately equal to ^2gh ,
and then, striking the

buckets, this is reduced to u, the tangential velocity of

the wheel, whereby a loss of energy in impact occurs. It

then descends through the distance hhQ hi, acting by
its weight alone, and finally, dropping out of the buckets,

reaches the level of the tail race with a velocity which

causes a second loss of energy. Let h' be the head lost

in entering the buckets, and let v\ be the velocity ^2gh
1

with which the water reaches the level of the tail race.

Then the hydraulic efficiency of the wheel is given by the

general formula in the last article. It may be shown, as
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in Treatise on Hydraulics, that when the wheel revolves

at the most advantageous velocity h' equals HV Then

is the maximum efficiency of the overshot wheel.

This investigation shows that one-half of the entrance

fall h and the whole of the exit fall hi are lost, and it is

hence plain that in order to make e as large as possible

both h and hi should be as small as possible. The fall

hQ is made small by making the radius of the wheel large,

but it cannot be made zero, for then no water would enter

the wheel; it is generally taken so as to make the angle

about 10 to 15 degrees. The fall hi is made small by
giving to the buckets a form which will retain the water

as long as possible. The practical advantageous velocity

of the overshot wheel is found to be about 0.4v
,
and its

efficiency is found to be high, ranging from 70 to 90 per-

cent. In times of drought, when the water supply is low,

and it is desirable to utilize all the power available, its

efficiency is the highest, since then the buckets are but

partly filled and hi becomes small. Herein lies the great

advantage of the overshot wheel; its disadvantage is in

its large size and the expense of construction and main-

tenance.

Prob. 62. Estimate the horse-power and efficiency of an over-

shot wheel which uses 1080 cubic feet of water per minute under a

head of 26 feet, the diameter of the wheel being 23 feet, and the

water entering 15 from the top and leaving 12 from the bottom.

ART. 63. BREAST AND UNDERSHOT WHEELS

The breast wheel is applicable to small falls, and the

action of the water is partly by impulse and partly by

weight. As represented in Fig. 70, water from a reser-

voir is admitted through an orifice upon the wheel under
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the head h with the velocity v
',

the water being then

confined between the vanes and the curved breast acts

by its weight through a distance hz ,
until it is released at

the level of the tail race and departs with the velocity u,

Fig. 70

which is the same as that of the circumference of the

wheel. The total energy of the water being Wh, the

work of the wheel is eWh, if e be its efficiency. Owing to

leakage and to the larger loss in impact, the efficiency of

the breast wheel is materially less than that of the over-

shot, and usually ranges from 50 to 80 percent.

The common undershot wheel has plane radial vanes

and is set in a flowing stream so that the water enters and

leaves almost in a horizontal direction. When v is the

velocity of the entering water and u that of the circum-

ference of the wheel the dynamic pressure developed

(Art. 18) is W(vu)/g and the work done per second is

Wu(v u)g. This expression has its greatest value when
u= y2v >

s that the maximum work is %Wv2
/2g and the

greatest efficiency is Experiments show that the

advantageous velocity is about OAv instead of 0.5z>, and

that the efficiency ranges from 0.25 to 0.40.

9
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Prob. 63. Estimate the horse-power that can be obtained from

an undershot wheel with plane radial vanes placed in a stream having
a mean velocity of 5 feet per second, the width of the wheel being
15 feet, its diameter 8 feet, and the maximum immersion of the vanes

being 1.33 feet.

ART. 64. VERTICAL IMPULSE WHEELS

A vertical wheel having small vanes against which

the water is delivered from a nozzle, is often called an

impulse wheel, or a
"
hurdy-gurdy" wheel. The Pelton

wheel, the Cascade wheel, and other forms can be pur-

chased in several sizes and are convenient on account of

their portability. Fig. 71 shows an. outline sketch of

such a wheel with the vanes

somewhat exaggerated in

u size. The simplest vanes are

radial planes as at A, but

these give a low efficiency.

Curved vanes, as at B, are

generally used, as these cause

the water to turn backward,

opposite to the direction of

the motion, and thus to leave

the wheel with a low abso-

lute velocity. In the plan of the wheel it is seen that the

vanes may be arranged so as also to turn the water side-

wise while deflecting it backward. The experiments of

Browne show that with plane radial vanes the highest

efficiency was 40.2 percent, while with curved vanes or

cups 82.5 percent was attained. The velocity of the

vanes which gave the highest efficiency was almost ex-

actly one-half the velocity of the jet.

The Pelton wheel is used under high heads, and hence

it has a high velocity. These wheels are wholly of iron,

and are provided with a casing to prevent the spattering
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of the water. Fig. 72 shows a form with three nozzles,

by which three streams are applied at different parts of

Fig. 72

the circumference, in order to obtain a greater power
than by a single nozzle.

Prob. 64. The impinging jet on a hurdy-gurdy wheel has a di-

ameter of 0.182 feet and a velocity of 58.5 feet per second. The

efficiency of the wheel being 44.5 percent, what effective horse-

power does it furnish?

ART. 65. THE REACTION WHEEL

The reaction wheel, invented by Barker about 1740,

consists of a number of hollow arms connected with a

hollow vertical shaft, as shown in Fig. 73. The water

issues from the ends of the arms in a direction opposite

to that of their motion, and by the dynamic pressure due

to its reaction the energy of the water is transformed into
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useful work. Let the head of water CC in the shaft be h;

then the pressure-head BB which causes the flow from the

arms is greater than h, on account of the centrifugal force

due to the rotation of the

wheel. Let u\ be the absolute

velocity of the exit orifices,

thenBB is equal to h+u1
2
/2g,

and the velocity of discharge
relative to the wheel is

The absolute velocity V

the issuing water now is

of

and the theoretic efficiency

of the wheel is

2gh

m 73
This investigation shows

that the efficiency of a reac-

tion wheel increases with its speed and can only become

unity when Ui=Vi. Nothing approaching this can, how-

ever, be realized and, on account of losses due to friction,

a very high speed in impracticable. When V\ = 3ui, the

efficiency is only 0.50. The reaction wheel is not now
used as a hydraulic motor, but it is of interest as being
the starting point for the subject of turbines.

Prob. 65. Show that Vi
2
equals (Fi wi)

2
,
that 2gh equals Fi2

Mi
2
,

that Vi
2
/2g equals (Fi Ui)/(Vi-{-ui), and that e equals 2ui/(V\-{-ui),

ART. 66. OUTWARD-FLOW TURBINES

A reaction turbine is driven by the dynamic pressure

and reaction of flowing water (Art. 18) which at the same
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time is under a certain degree of static pressure. If in

the reaction wheel of Fig. 73 the arms be separated from

the penstock at A, and be so arranged that BA revolves

around the axis while AC is stationary, the resulting ap-

paratus may be called a reaction turbine. The static

pressure of the head CC can still be transmitted through
the arms, so that, as in the reaction wheel, the discharge

is influenced by the speed. Fig. 74 gives a vertical

Fig. 74

section of an outward flow wheel W, to which water is

brought by guides G from a fixed penstock P. Between

the guides and the wheel there is a space in which slides

an annular vertical gate E', this gate serves to regulate

the quantity of water and the wheel stops when it is

entirely depressed. Fig. 75 gives again the lower part
of Fig. 74, and above it is a horizontal section showing
the arrangement of the guides G and the buckets of the

wheel W. The guides are curved so as better to direct

the water against the buckets, and the buckets are curved



134 HYDRAULIC MOTORS

so that the water may leave the wheel with low absolute

velocity VL Water enters all around the circumference

so that the buckets

are fully filled. The
wheel is attached by
arms to the vertical

shaft the motion of

which delivers power
in a building above.

The outward-flow

turbine is often
called the Fourney-
ron turbine, it hav-

ing been invented

by him in 1827. The

guides and buckets

with the gates and

the surrounding casings, are made of iron. Numerous
forms with different kinds of gates and different propor-

tions of guides and vanes are in the market. They are

made of all sizes from 6 to 60 inches in diameter, and

larger sizes are built for special cases. The great turbines

installed at Niagara in 1896 are of the outward-flow type,

the inner diameter of a wheel being 63 inches and each

twin turbine furnishing about 5000 horse-powers. The

efficiency of turbines is greatest at full gate, ranging

generally from 70 to 90 percent. There is a certain ve-

locity, called the advantageous speed, with which the

turbine must revolve in order to give the maximum

efficiency.

Prob. 66. If the efficiency of a turbine is 75 percent when de-

livering 5000 horse-powers under a head of 136 feet, how many
cubic feet of water per minute pass through it?
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ART. 67. INWARD-FLOW TURBINES

The smaller sizes of turbines used in the United States

are mostly of the inward-flow type, or of a combined in-

ward- and downward-flow type. Fig. 76 shows an in-

ward flow turbine set in a wooden penstock, from which

the water enters the guides, then passes through the wheel,

and is finally discharged downward through a draft tube.

Fig. 77 shows horizontal vertical sections of this turbine,

Fig. 76

G being the fixed guides and W the movable wheel, with

an annular gate sliding vertically between them. The
wheel is attached by arms to the vertical shaft which is

supported in a step bearing below and carries the power
into a building above. An inward-flow turbine is often

called the Francis turbine, it having been invented by
James B. Francis about 1850.
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Fig. 77

For both outward-flow and inward-flow turbines there

is a certain advantageous speed Ui at which the wheel

must move in order to

obtain the maximum

power, while the depths

d
, d, d\ and the angles

a, <, /3 in Figs. 75 and

77 must also be related

by certain conditions.

See Merriman's Treatise

on Hydraulics for this

theory.

Prob. 67. A test of an

electric generator at Niagara
showed that 5498 kilowatts

were generated by a dis-

charge of 447.2 cubic feet of water per second through the turbine

under a head of 135.1 feet. The efficiency of the generator be-

ing 97 percent, what was the efficiency of the turbine?

ART. 68. MEASUREMENT OF POWER

The usual method of measuring the effective work of

a hydraulic motor is by means of the friction brake or

power dynamometer invented by Prony about 1780. In

Fig. 78 is illustrated a simple method of applying the

apparatus to a vertical shaft, the upper diagram being
a plan and the lower an elevation. Upon the vertical

shaft is a fixed pulley, and against this are seen two rec-

tangular pieces of wood hollowed so as to fit it, and con-

nected by two bolts. By turning the nuts on these bolts

while the pulley is revolving, the friction can be increased

at pleasure, even so as to stop the motion; around these

bolts between the blocks are two spiral springs (not shown

in the diagram) which press the blocks outward when the

nuts are loosened. To one of these blocks is attached a
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cord which runs horizontally to a small movable pulley

over which it passes, and supports a scale-pan in which

weights are .placed. This

cord runs in a direction

opposite to the motion of

the shaft, so that when
the brake is tightened, it

is prevented from revolv-

ing by the tension caused

by the weights. The direc-

tion of the cord in the

horizontal plane must be

such that the perpendicu-
lar let fall upon it from

the center of the shaft,

or its lever-arm, is con-

stant
;

this can be effected

by keeping the small

pointer on the brake at a fixed mark established for that

purpose.

To measure the work done by the wheel, the shaft is

disconnected from the machinery which it usually runs

and allowed to revolve, transforming all its work into heat

by the friction between the revolving pulley and the

brake, which is kept stationary by tightening the nuts

and at the same time placing sufficient weights in the

scale-pan to hold the pointer at the fixed mark. Let

N be the number of revolutions per minute as deter-

mined by a counter attached to the shaft, P the tension

in the cord, which is equal to the weight of the scale-pan

and its loads, I the lever-arm of this tension with respect

to the center of the shaft, r the radius of the pulley, and

F the total force of friction between the pulley and the

brake. Now in one revolution the force F is overcome

Fig. 78
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through the distance 2ur, and in N revolutions through
the distance 2irrN. Hence the effective work done by
the wheel in one minute is

k~F.2irrN~2irN.Fr

The force F acting with the lever-arm r is exactly bal-

anced by the load P acting with the lever-arm I; accord-

ingly the moments Fr and PI are equal, and hence the

work done by the wheel in one minute is

k = 2irNPl

Lastly, if P is in pounds and Im feet, the formula for the

effective horse-power of the wheel is

It is seen that this method is independent of the radius

of the pulley, which may be of any convenient size; for

a small motor the brake may be clamped directly upon
the shaft, but for a large one a pulley of considerable

size is needed and the brake is often made of iron and

almost completely encircles the pulley. Both brake and

pulley sometimes become hot, to prevent which a stream

of cool water is allowed to flow upon them. The work

or power measured is that delivered at circumference of

the pulley, and does not include that power which is re-

quired to overcome the friction of the shaft upon its bear-

ings. The shaft or axis of every water-wheel must have

at least two bearings, the friction of which consumes

probably about 3 percent of the power. The hydraulic

power of the wheel, regarded as a user of water, is hence

about 3 percent greater than that computed from above

formula. The efficiency of the wheel is found by divid-

ing the effective work by the theoretic work. Let W be

the weight of water delivered per minute and h the head;

then e = k/Wh, which is usually about 3 percent too large.
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Prob. 68 A. Find the power and efficiency of a motor which

makes 670 revolutions per minute, the weight on the brake being 2

pounds 14 ounces and its lever-arm 1.33 feet, and the theoretic power
of the fall being 1.38 horse-power.

Prob. 68 . Let P = 12.5 pounds, 1 = 14.31 feet, and N =635;
also let the discharge per second, as measured by a weir, be 4.81

cubic feet per second which is delivered upon the wheel under a

head of 50.1 feet. Compute the effective power and efficiency.

Prob. 68 C. For a certain turbine the water from the tail race

was measured over a weir with end contractions, the length of the

weir being 1.909 feet and the head on the crest 0.287 feet. During
the test the gage in the penstock read 11.25 feet and that in the tail

race read 0.30 feet. The weight on the brake was 3.0 pounds and

its lever arm was 1.431 feet. Compute the theoretic power, the

effective power, and the efficiency of the motor.
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CHAPTER 8

PUMPS AND PUMPING

ART. 69. THE SUCTION PUMP

The term "suction" is a misleading one unless it be

clearly kept in mind that water will not rise in a vacuum
tube unless the atmospheric pressure can act underneath

it. For example, no amount of rarefaction above the

surface of the water in a glass bottle will cause that water

to rise. When the tube is inserted into a river or pond,

however, the water will rise in it when a partial vacuum
is formed, since the atmospheric pressure which is trans-

. mitted through the

water pushes it up
until equilibrium is

secured. The mean

atmospheric pressure

of 14.7 pounds per

square inch at the sea

level is equivalent to

a height of water of

34 feet, and this is the

limit of raising water

by suction alone. In

practice this height

cannot be reached on

account of the impos-

sibility of producing

a perfect vacuum, and it is found that about 28 feet is

the maximum height of suction lift.

Fig. 79 gives two diagrams illustrating the principle of

Fig. 79
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action of the common suction and lift pump. It con-

sists of two vertical tubes BD and BE, the former being

called the suction pipe and the latter the pump cylinder.

The piston A in the pump cylinder has a valve opening

upward, and the valve B at the top of the suction pipe

also opens upward. In the left-hand diagram the piston

is descending, the valve A being open and B being closed

under the pressure of the air in the space between them.

In the right-hand diagram the piston is ascending, the

valve A being closed by the pressure of the air or water

above it, while B is open, owing to the excess of atmos-

pheric pressure below it.

Let hi be the distance from the water level D to the

lowest position of the piston; this is called the height of

lift by suction. Let hi be the height from the lowest

position of the piston to the spout where the water flows

out; this is called the height of lift by the piston. The
distance hi+h2 is the vertical height through which the

water is raised, and if W be the weight of water raised

in one second, the useful work per second is W(hi+h^.
The energy imparted to the pump through the piston rod

is always greater than this useful work, since energy is

required to overcome the frictional resistances. The
action of this pump is intermittent, and water flows from

the spout only during the upward stroke of the piston.

When there are N upward strokes per minute, the dis-

charge in one minute is NAl, if the piston and its valve

are tight. The useful work per minute is NwAl(h\+hz),
if w is the weight of a cubic unit of water. When / and

hi+hz are in feet, A in square feet, and w hi pounds per

cubic foot, the horse-power expended in this useful work is

and to this must be added the horse-power required to
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overcome the resistances of friction and inertia. This

additional power often amounts to as much as that needed

for the useful work, and in this case the efficiency of the

pump is 50 percent. Suction and lift pumps are of numer-

ous styles and sizes, the simplest being of square wooden
tubes or of round tin-plate tubes with leather valves,

and these can be readily made by a carpenter or tinsmith.

Prob. 69. The diameter of the pump cylinder is 8 inches and
that of the suction pipe is 6 inches, while the vertical distance from

the water level to the spout is 23 feet. If the pump piston makes
30 upward strokes per minute, each 9 inches long, what horse-power
is required to operate the pump if its efficiency is 45 percent?

ART. 70. THE FORCE PUMP

A force pump is one that has a solid piston which can

transmit to the water the pressure exerted by the piston

rod and thus cause it

to rise in a pipe. The

early force pumps had

little or no suction lift,

as the pump cylinder

was immersed in the

body of water which

furnished the supply,

but the modern forms

usually operate both

by suction and pres-

sure, the former occur-

ring in a suction pipe

and the latter in the

pump cylinder. Fig.

80 shows the principle

E

D

Fig. 80

of action of the common vertical single-acting suction

and force pump in which there is no water above the



ART. 70 THE FORCE PUMP 143

piston. In the left-hand diagram the piston is ascend-

ing, and the water is rising in the suction pipe BD
under the upward atmospheric pressure; this ascent of

the water occurs in exactly the same manner as explained

in Art. 69, and after several strokes its level rises above

the suction valve B. The right-hand diagram shows

the piston descending and forcing the water up the dis-

charge pipe CE. At C, where this pipe joins the pump
cylinder, is a check valve which closes on the upward
stroke and thus prevents the wrater in CE from returning

into the pump cylinder, while it opens on the downward

stroke under the upward pressure of the water.

The cylinder of the single-acting pump may also be

placed horizontally, the vertical suction and discharge

pipes being connected to one end of the cylinder. The

action is intermittent and hence not advantageous for

large pumps. The double-acting pump is one having a

Pig. 81 Pig. 82

single cylinder in which a solid piston or plunger exerts

suction and pressure in both strokes and thus gives a

nearly continuous flow through suction and discharge

pipes. Fig. 81 shows the form known as the piston

pump while Fig. 82 is that called the plunger pump, the

piston being replaced by a long cylinder moving in a
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short stuffing box AA. In both figures D is the suction

pipe and E the discharge pipe. When the piston moves
from left to right, the valves BI and C% open, while B2

and Ci close; when it moves in the opposite direction,

52 and Ci open, while BI and C2 close. The cylinder of

the piston pump must be bored to an exact and uniform

size, and its piston must be carefully packed, while in

the plunger pump only the short length of the stuffing

box is bored and packed, the plunger itself having no

packing. The water lifted in one stroke is Al, where A
is the area of the piston and I the length of its stroke,

provided there is no leakage. The expression for the

work utilized is the same as that given in Art. 69, but

the efficiency is usually much greater, it being 80 or 90

percent in the best forms with low lifts and speeds.

Prob. 70. Consult Ewbanks' Hydraulics and Mechanics (New
York, 1847), and describe a method of raising water through a low

lift by means of a frictionless plunger pump. Ewbank notes that

a stout young man weighing 134 pounds raised 8K cubic feet per

minute with this machine to a height of ll/^ feet, and worked at

this rate nine hours per day. If the efficiency of this pump was

unity, what horse-power did the stout young man exert?

ART. 71. PUMPING ENGINES

The modern pumping engine consists of one or more

steam cylinders connected to the same number of pump
cylinders by piston rods, so that the steam pressure is

directly transmitted through them to the water. The

water cylinders are usually of the plunger type, and these

are connected to the same suction and discharge pipes,

an air chamber being placed on the latter to relieve the

pump chambers of shock and to insure steady flow.

The term "duty" is often employed as a measure of

the performance of a pumping engine, instead of express-
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ing it by an efficiency percentage. This term was de-

vised by Watt, who defined duty as the number of foot-

pounds of useful work produced by the* consumption of

100 pounds of coal. A more precise definition of duty
was introduced in 1890 by the American Society of Me-
chanical Engineers, namely, that duty should mean
the number of foot-pounds of work produced by the

expenditure of 1 000 000 British thermal heat units.

One British thermal heat unit is that amount of energy
which will raise one pound of pure water one Fahrenheit

degree in temperature when the water is at or near the

temperature of maximum density (Art. 3) ;
this amount

of energy is 778 foot-pounds, and this constant is called

the mechanical equivalent of heat. The duty of a per-

fect pumping engine, in which no losses of any kind occur,

would be 778 000 000 foot-pounds. The highest duty
obtained in a test is about 180 000 000 foot-pounds, and

the efficiency of such an engine is 180/778= 0.23. Com-
mon pumping engines have duties ranging from 120 000 000

to 60 000 000, the corresponding efficiencies being from

15 to 7.5 percent. The modern definition of duty agrees

with that of Watt, if the coal is of such quality that one

pound of it possesses a potential energy of 10 000 British

heat units, which is somewhat less than that obtainable

from average coal. The higher the duty of a pumping
engine the greater is the amount of work that can be per-

formed by burning a given quantity of coal. A high-

duty engine is hence economical and a low-duty engine
is wasteful in coal consumption, but the first cost of the

former is much greater than that of the latter.

Prob. 71. A certain pumping engine had a water plunger of 172

square inches section area, the length of stroke being 18.9 inches.

During a test of 12 hours the number of single strokes was 76 000,

and the leakage past the plunger was 5900 cubic feet. How many
gallons per minute were discharged by the pump?

10
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ART. 72. THE CENTRIFUGAL PUMP

The centrifugal pump is the reverse of a turbine wheel,

and any reaction turbine, when run backwards by power

applied to its axle, will raise water through its penstock.

Fig. 83 shows the principle of the arrangement and action

Fig. 83

of the centrifugal pump. The power is applied through
the axis to rotate the wheel BB in the direction indi-

cated by the arrow. This wheel is formed of a number
of curved vanes like those in a turbine wheel (Art. 66).

The revolving vanes produce a partial vacuum, and this

causes the water to rise in the suction pipe DD which

enters through the center of the wheel case and delivers

the water at the axis of the wheel. The water is then

forced outward through the vanes and passes into the

volute chamber CC, which is of varying cross-section in

order to accommodate the increasing quantity of water

that is delivered into it, and all of which passes up the

discharge pipe E. The rotation of the wheel hence pro-
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duces a negative pressure at the upper end of the suction

pipe and a positive pressure in the volute chamber, and

the water rises in the pipes in the same manner as hi those

of a suction and force pump. The height of the suction

lift cannot usually exceed about 28 feet.

The centrifugal pump possesses an advantage over the

force pump in having no valves and in being able to

handle muddy water, for even gravel may pass through
the vanes without injuring them. The above figures

represent the principle rather than the actual details of

construction. Usually the suction pipe is divided into

two parts which enter the axis upon opposite sides of the

wheel, and the volute chamber is often made wider than

the wheel case, thus forming what is called a whirlpool

chamber, which prevenrts some of the losses of head due

to impact. The efficiency of the pump usually ranges

from 40 to 60 percent, it being the highest for low lifts.

Prob. 72. A centrifugal pump lifts 120 cubic feet of water per
minute through a height of 18 feet, the power required to do this

being 8.2 horse-powers. Compute the efficiency of the pump and

the head lost in friction.

ART. 73. COMPRESSED-AIR PUMPS

Pumps which have no moving parts and which operate

through the action of air suction and dynamic pressure

constitute another class. Here belong the jet or ejector

pumps which act largely through suction, and the in-

jector pump used on locomotives. The latter produces
a vacuum through the flow of steam, and cannot be dis-

cussed here, as it involves principles of thermodynamics.
The fundamental principle, however, is indicated in Fig.

84, which shows the jet apparatus invented by James

Thomson in 1850. The water to be lifted is at C, and it

rises by suction to the chamber B, from which it passes
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D

through the discharge pipe to the tank D. The forces

of suction and pressure are produced by a jet of water

issuing from a nozzle at the mouth of the discharge pipe,

the nozzle being at the end

of a pipe AB through which

water is brought from a res-

ervoir; or the water deliv-

ered from the nozzle may
come from a hydrant or

force pump.

The air lift pump is ex-

Fig. 84 tensively used for raising

water from deep wells, com-

pressed air which is forced down a vertical pipe in the

well tube issuing from its lower end. As it issues, bub-

bles are formed in the entire column of water in the well

tube, and being lighter than a column of common water,

it rises to a greater height under the atmospheric pres-

sure. In this manner water having a natural level 50

feet or more below the surface of the ground may be

caused to rise above that surface.

Among the many forms of pumps operating under the

pressure of compressed air only the ejector pump used

in the Shone system of sewerage can here be mentioned.

The sewage from a number of houses flows to a closed

basin, called an injector, in which it continues to accumu-

late until a valve is opened by a float. The opening of

this valve allows compressed air to enter, and this drives

out the sewage through a discharge pipe to the place

where it is desired to deliver it.

Prob. 73. Consult engineering journals of 1893 and ascertain

facts about the Shone ejectors used at the World's Columbian Ex-

position in Chicago.
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ART. 74. THE HYDRAULIC RAM

The hydraulic ram is an apparatus which employs the

dynamic pressure produced by stopping a column of

moving water to raise a part of this water to a higher

level than that of its source. The principle of the action

of the hydraulic ram is shown in Fig. 85, where A is the

Fig. 85

reservoir that furnishes the supply, BCD the ram, AB the

drive pipe which carries the water to the ram, DE the

discharge pipe through which a part of the water is raised

to the tank E. The ram itself consists merely of the

waste valve B through which a part of the water from

the drive pipe escapes, and the air vessel D which has a

valve C that allows water to enter it through BC, but

prevents its return. The waste valve B is either weighted
or arranged with a spring so that it will open when acted

upon by the static pressure due to the head H. As soon

as it opens the water flows through it, but as the velocity

increases the dynamic pressure or impulse (Art. 18) due

to the motion of the column AB becomes sufficiently great

to close the valve B. Then this dynamic pressure opens
the valve C and compresses the air in the air chamber or

forces water up the discharge pipe. A moment later when

equilibrium has obtained in the air vessel, the valve C
closes and the air pressure maintains the flow for a short
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period in the discharge pipe, while the water in the drive

pipe comes to rest. Then the waste valve B opens again,

and the same operations are repeated.

The least possible fall in the drive pipe of the hydraulic
ram is about l}/2 feet and the least length of drive pipe
about 15 feet. It is customary to make the area of the

discharge pipe from one-third to one-fourth that of the

drive pipe, and with these proportions a fall of 10 feet

will force water to a height of nearly 150 feet. A com-

mon rule of manufacturers is that about one-seventh of

the water flowing down the drive pipe may be raised to a

height five times that of the fall in the drive pipe; this

is a rough rule only, for the length of the discharge pipe
is one of the controlling factors as well as its vertical rise.

Prob. 74. Consult Ewbanks' Mechanics and Hydraulics (New
York, 1847) and ascertain the circumstances which led to the in-

ventien of the hydraulic ram.

ART. 75. PUMPING THROUGH PIPES

A pump is often used to force water directly through
the mains of a water-supply system under a designated

pressure. The work of the pump in this case consists

of that required to maintain the pressure and that re-

quired to overcome the frictional resistances. To reduce

the injurious resistance to the smallest limits the mains

should be large in order that the velocity of flow may be

small. In Fig. 86 is shown a symbolic representation of

the case of pumping into a main, P being the pump, C
the source of supply, and DM the pressure-head which is

maintained upon the end of the pipe during the flow.

At the pump the pressure-head is AP, so that AD repre-

sents the hydraulic gradient (Art. 38) for the pipe from

P to M. The total work of the pump may then be re-
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Fig. 86

garded as expended in lifting the water from C to A, and

this consists of three parts corresponding to the heads

CM or z, MD or hi, and AB; the first overcoming the force

of gravity, the second

maintaining the discharge

under the required pres-

sure, while the last is

transformed into heat in

overcoming friction and

other resistances. In this

direct method of water

supply a standpipe AP is

often erected near the

pump, in which the water rises to a height correspond-

ing to the required pressure, and which furnishes a small

supply when a temporary stoppage of the pumping en-

gine occurs.

For example, let it be required to find the horse-power
of a pump to raise 1 200 000 gallons per day through a

height of 230 feet in a pipe of 6 inches diameter and 1400

feet length. These data give the discharge per second

as 1.86 cubic feet and the velocity in the pipe as 9.47 feet

per second, which corresponds to a velocity-head of 1.39

feet. The probable head lost in entering the pipe (Art.

33) is 0.5X1.39= 0.7 feet. For a new clean pipe the

friction factor / (Art. 34) is about 0.020, whence the loss

of head in friction is about 77.8 feet. The other losses

of head depend upon the details of the pump cylinder

and valves and may be taken as 4 times the velocity-head

or 5.6 feet. The total head to be overcome is 230+
0.7+77.8+5.6 = 314.1 feet. The work to be performed

per second then is 62.5X1.86X314.1 = 36 510 foot pounds,

and the horse-power to be expended is 36510/550= 66.4.

Here the useful head is 230 feet while the total head is
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314.1 feet, so that the efficiency of the pump and pipe is

only 314/230= 73 percent. The losses can be much
diminished by using a larger pipe.

Prob. 75 A. For the above data let the 6-inch pipe be replaced

by one 14 inches in diameter. Compute the velocity in the pipe,

and the horse-power required.

Prob. 75 B. A house is 60 feet lower than a spring A and 30

feet higher than a spring B. A pipe from A to the house runs near

B. Explain a method by which the water from B can be drawn
into the pipe and be delivered at the house.

Prob. 75 C. What is the efficiency of a bucket pump which lifts

2000 liters of water per minute through a height of 3.5 meters with

an expenditure of 2.5 metric horse-powers?

Prob. 75 D. The calorie is the metric thermal unit, this being
the energy required to raise one kilogram of water one degree centi-

grade when the temperature of the water is near that of maximum
density. How many calories are equivalent to 1 000 000 British

thermal units? ,

ART. 76. ANSWERS TO PROBLEMS

Below will be found answers to some of the problems

given in the preceding pages, the numbers of the prob-
lems being placed in parentheses. In general it is not a

good plan for a student to solve a problem in order to

obtain a given answer. One object of solving problems

is, of course, to obtain correct results, but the correctness

of those results should be established by methods of veri-

fication rather than by the authority of a given answer.

However satisfactory it may be to know in advance the

result of the solution of an exercise, let the student bear

in mind that after commencement day answers to prob-

lems will not be given.

(1 B) One horse-power. (6 A) 676.9 net tons per square

(3) 147.2 pounds. foot.

(4 A) 960 feet. (8) 2719 pounds.
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(9 C) 10.26 feet. (37 A) 3.538 feet.

(11 C) 3 horse-powers. (40 A) 18.4 feet.

(11 F) 45.6 pounds. (42 A) 11.3 feet.

(12 B) 56.9 feet per second. (43 A) 1.4 feet.

(13 B) 12.9 feet per second. (45) 6.0 feet.

(16 B) 32.1 feet per second. (46 A) 233/283.

(18 B) 19.3 pounds. (47) c = 123.

(20 B) 0.71 cubic feet per second. (51 B) 364 pounds.

(20 E) 66.7 feet per second. (59) 3.9 feet per second.

(21 A) 0.0326 cubic feet per (62) From 48 to 50 horse-

second, power.

(24 A) 120 gallons per minute. (63) From 12 to 14 horse-

(25 B) 0.602. power.

(29 A) 0.802. (68 C) e=0.35.

(31 4) 0.28 feet. . (70) About one-sixth of a horse-

(32 B) 24 feet. power.

(32 E) 79.6 feet per second. (72) e = about 50 percent.

(33 A) 0.29 feet. (75 A) 48.9 horse-powers.
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Aqueducts, 65
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Boiling point, 6
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Brake, friction, 136
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Compound pipe, 78

Compressed-air pumps, 147

Conduits, 89-98
Contraction of jet, 40

of cross-section, 58, 61

Current meter, 118

Dams, 17

Discharge, 33, 70, 111, 121

Duty of pumps, 145

Dynanometer, power, 136

Efficiency, 30, 125, 126, 138

Ejector pump, 148

Energy, 2, 7, 29, 125

Expansion of section, 59, 60

Falling body, 22

Fire hose, 87

Force pump, 142

Friction, 67

Friction brakes, 136

factors, 69

Gages, 107, 121

Gaging streams, 90, 120

Gallon, 1

Gates, 16, 133

Gradient, hydraulic, 76

Gravity, acceleration of, 21

Head, 9, 57, 66

Hook gage, 107, 110

Horse-power, 2

Hose, 87

House-service pipes, 80

Hydraulic gradient, 76

motors, 125-139

press, 8

radius, 89

ram, 149

Hydraulics, defined, 1

theoretic, 21-38

Hydrostatics, 1-18

Ice, 3

Impulse, 31

Impulse wheels, 130

Jet pump, 148

Jets, 28, 29, 62

Jump, 104

Kinetic energy, 2

Kutter's formula, 96
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Long pipes, 71

Loss of head, 56, 68

Loss of weight in water, 10, 11

Mean velocity, 91

Measurement of water, 106-124

Mercury, 6

Meters for water, 114

Miner's inch, 108

Negative pressure, 37, 52, 78
Normal pressure, 13

Nozzles, 62, 63, 85, 117

Orifices, 39-52
Overshot wheels, 126

Pelton wheel, 130

Perimeter, wetted, 89

Piezometer, 74

Pipes, 65-88
Pitot's tube, 117

Power, 2, 30, 136

Pressure, atmospheric, 5, 140

dynamic, 32
flow under, 24

negative, 37

normal, 12

regulator, 82

submerged body, 12

units of, 1, 5, 9

Pressure-head, 10

Pumps and pumping, 140-154

Pumping engine, 144

Radius, hydraulic, 89

Ram, hydraulic, 149

Reaction, 31, 131

Regulator, pressure, 82

Rivers, 89, 99-105, 123

Siphon, 38, 78

Slope, 90

Specific gravity, 12

Steady flow, 35, 103
Steel pipes, 83

Streams, 99
Suction pump, 140

Theoretic hydraulics, 21-38

Transporting capacity, 101

Tubes, 52-64

Turbines, 132-136

Undershot wheels, 126
Units of measure, 1

Vacuum, 5, 140
Velocities in a cross-section, 122

Velocity, 1, 23, 42, 70, 121

Velocity of approach, 26
Venturi meter, 115

Waste weirs, 113

Water, boiling point, 6

freezing, 3

measurement of, 106

meters, 114

physical properties, 2, 3

weight of, 3, 4

Water wheels, 125, 131

Weirs, 107-114
Wetted perimeter, 89

Work, 2, 125
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